Existence of Solutions for a Nonlocal Boundary Value Problem at Resonance on the Half-Line

被引:0
作者
S. Djafri
T. Moussaoui
D. O’Regan
机构
[1] University of Sciences and Technology Houari Boumedienne,Laboratory of Fixed Point Theory and Applications
[2] École Normale Supérieure,School of Mathematics, Statistics and Applied Mathematics
[3] National University of Ireland,undefined
来源
Differential Equations and Dynamical Systems | 2023年 / 31卷
关键词
Coincidence degree; Boundary value problem; Resonance; Unbounded interval; 34B10; 34B15; 34B45; 70K30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are interested in the existence of solutions for the following boundary value problem at resonance on the half-line [graphic not available: see fulltext]where f:R+×R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}^{+}\times \mathbb {R}^{2}\rightarrow \mathbb {R}$$\end{document} is q-Carathéodory, g:R+→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g:\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} $$\end{document} is a nondecreasing function with g(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(0)=0$$\end{document} under the resonance condition g(∞)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(\infty )= 1$$\end{document}. The coincidence degree theory of Mawhin [17] is used to establish the existence of at least one solution for the posed problem.
引用
收藏
页码:69 / 80
页数:11
相关论文
共 31 条
  • [1] Agarwal RP(2001)Continuous and discrete boundary value problems on the infinite interval. Existence theory Mathematika 48 273-292
  • [2] O’Regan D(2002)Limits of solutions of a perturbed linear differential equation Electron. J. Qual. Theory Differ. Equ. 3 1-11
  • [3] Avramescu C(2003)On positive solutions of boundary value problems for second-order functional differential equations on infinite intervals J. Math. Anal. Appl. 282 711-731
  • [4] Vladimirescu C(2000)A boundary value problem on an unbounded domain Differential Equations Dynam. Syst. 8 125-140
  • [5] Bai C(2016)Higher order boundary value problems at resonace on an unbounded interval Electron. J. Differential Equations 29 1-10
  • [6] Fang J(2002)Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem Appl. Math Lett. 15 401-407
  • [7] Eloe PW(2008)Multi-point boundary value problems on an unbounded domain at resonance Nonlinear Anal. 68 2158-2171
  • [8] Grimm LJ(2016)Resonant functional problems of fractional order Chaos Solitons Fract 91 573-579
  • [9] Mashburn JD(2016)Second-order functional problems with a resonance of dimension one Differ. Equ. Appl. 3 349-365
  • [10] Frioui A(2017)Solvability of a third-order differential equation with functional boundary conditions at resonance Bound Value Prob 1 81-1181