Isothermal measurement of heats of hydration in zeolites by simultaneous thermogravimetry and differential scanning calorimetry

被引:0
作者
Philip S. Neuhoff
Jie Wang
机构
[1] University of Florida,Department of Geological Sciences
来源
Clays and Clay Minerals | 2007年 / 55卷
关键词
Analcime; Calorimetry; Chabazite; Enthalpy; Hydration; Natrolite; Thermal Analysis; Thermodynamics; Zeolite;
D O I
暂无
中图分类号
学科分类号
摘要
A calorimetric method for determining isothermal partial and integral heats of hydration reactions (ΔH¯R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$\end{document} and ΔH∼R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$\end{document}, respectively) in zeolites and other mineral hydrates is presented. The method involves immersing a dehydrated sample in a humid gas stream under isothermal conditions within a thermal analysis device that records simultaneous differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) signals. Monitoring changes in sample mass (corresponding to extent of reaction progress) coincident with a quantitative measurement of heat flow allows for direct detection of ΔH¯R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$\end{document} as a function of the extent of hydration, which can be integrated to determine ΔH∼R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$\end{document}. In addition, it eliminates uncertainties associated with imprecise knowledge of the starting and final states of a sample during hydration. Measurement under isothermal conditions removes uncertainties associated with heat capacity effects that complicate interpretations of DSC measurements of dehydration heats conducted under traditional scanning temperature conditions. Example experiments on the zeolites natrolite, analcime and chabazite are used to illustrate strategies for quantifying ΔH¯R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$\end{document} and ΔH∼R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$\end{document} and minimizing errors associated with baseline uncertainties. Results from this method agree well with previously published values determined by other calorimetric techniques and regression of phase equilibrium data. In the case of chabazite, the results allowed detailed measurements of the variation in ΔH¯R,T,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$\end{document} for energetically different water types encountered progressively as the sample absorbed water. This technique complements and in many cases improves the quality of thermodynamic data obtained through phase equilibrium observations and other calorimetric techniques.
引用
收藏
页码:239 / 252
页数:13
相关论文
共 175 条
[1]  
Alberti A(1981)A partially disordered natrolite; relationships between cell parameters and Si-Al distribution Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry 37 781-788
[2]  
Vezzalini G(1982)Position of cations and water-molecules in hydrated chabazite — natural and Na-exchanged, Ca-exchanged, Sr-exchanged and K-exchanged chabazites Zeolites 2 303-309
[3]  
Alberti A(1996)The phases of natrolite during dehydration and rehydration studied by single crystal X-ray diffraction methods between room temperature and 923 K Neues Jahrbuch für Mineralogie Monatshefte 1996 171-187
[4]  
Galli E(2003)Stability of hydrous minerals on the Martian surface Icarus 164 96-103
[5]  
Vezzalini G(2003)The distribution of zeolites and their effects on the performance of a nuclear waste repository at Yucca Mountain, Nevada, USA American Mineralogist 88 1889-1902
[6]  
Passaglia E(2002)A calorimetric and statistical mechanics study of water adsorption in zeolite NaY Physical Chemistry Chemical Physics 4 4172-4180
[7]  
Zanazzi PF(1993)The temperature calibration of scanning calorimeters. 2. Calibration substances Thermochimica Acta 219 333-342
[8]  
Baur WH(1993)The heat-capacity of hydrous cordierite above 295 K Physics and Chemistry of Minerals 19 578-583
[9]  
Joswig W(1996)Equilibrium in the clinoptilolite-H American Mineralogist 81 952-962
[10]  
Bish DL(1997)O system Clays and Clay Minerals 45 826-833