On the Estimation of the Large Deviations Spectrum

被引:0
作者
J. Barral
P. Gonçalves
机构
[1] Institut Galilée,LAGA (UMR 7539), Département de Mathématiques
[2] Université Paris 13,RESO project
[3] INRIA Rhône-Alpes and ENS Lyon-LIP,undefined
来源
Journal of Statistical Physics | 2011年 / 144卷
关键词
Large deviations; Multifractals;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an estimation algorithm for large deviations spectra of measures and functions. The algorithm converges for natural examples of multifractals.
引用
收藏
相关论文
共 91 条
[1]  
Arbeiter M.(1996)Random self-similar multifractals Math. Nachr. 181 5-42
[2]  
Patszchke N.(1998)Random cascades on wavelet dyadic trees J. Math. Phys. 39 4142-4164
[3]  
Arnéodo A.(2003)Log-infinitely divisible multifractal processes Commun. Math. Phys. 236 449-475
[4]  
Bacry E.(1993)Singularity spectrum of fractal signals from wavelet analysis: exact results J. Stat. Phys. 70 635-674
[5]  
Muzy J.F.(2008)Continuous cascade models for asset returns J. Econ. Dyn. Control 32 156-199
[6]  
Bacry E.(2010)Multifractal analysis in a mixed asymptotic framework Ann. Appl. Probab. 20 1729-1760
[7]  
Muzy J.F.(2010)Multifractal analysis of complex random cascades Commun. Math. Phys. 219 129-168
[8]  
Bacry E.(2002)Multifractal products of cylindrical pulses Probab. Theory Relat. Fields 124 409-430
[9]  
Muzy J.F.(2009)Fractional multiplicative processes Ann. Inst. Henri Poincaré Probab. Stat. 45 1116-1129
[10]  
Arnéodo A.(2005)From multifractal measures to multifractal wavelet series J. Fourier Anal. Appl. 11 589-614