The Bogomolny Decomposition for Systems of Two Generalized Nonlinear Partial Differential Equations of the Second Order

被引:0
作者
Ł. Stȩpień
D. Sokalska
K. Sokalski
机构
[1] Pedagogical University of Cracow,Department of Computer Sciences and Computer Methods
[2] Technical University of Cracow,Institute of Physics
[3] Technical University of Czȩstochowa,Institute of Computer Science
来源
Journal of Nonlinear Mathematical Physics | 2009年 / 16卷
关键词
Nonlinear partial differential equations; variational methods; Bogomolny decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Using a concept of strong necessary conditions we derive the Bogomolny decomposition for systems of two generalized elliptic and parabolic nonlinear partial differential equations (NPDE) of the second order. The generalization means that the equation coefficients depend on the field variables. According to the Cinquini-Cibrario criteria [18–20] the first type is characterized to be an elliptic, whereas the second one is a parabolic system. As a result we derive conditions for existence of the Bogomolny relationships.
引用
收藏
页码:25 / 34
页数:9
相关论文
共 33 条
  • [1] Bogomolny E B(1976)Stability of classical solutions Sov. J. Nucl. Phys 24 861-870
  • [2] Hong J(1990)Multivortex solutions of the Abelian–Chern–Simons–Higgs theory, Phys Rev. Lett 64 2230-2233
  • [3] Kim Y(1990)Self-dual Chern–Simons vortices, Phys Rev. Lett 64 2234-2237
  • [4] Pac P Y(1992)Vortex scattering, Commun Math. Phys 145 149-180
  • [5] Jackiw R(1978)Supersymmetry algebras that include topological charges Phys. Lett 78 97-101
  • [6] Weinberg E J(2000)Supersymmetry and Bogomol’nyi equations in the Maxwell Chern–Simons systems Acta Phys. Pol 31 637-645
  • [7] Samols T M(1993)Bogomol’nyi explained Nucl. Phys 397 173-194
  • [8] Olive D(1994)Supersymmetry and Bogomolny equations in the Abelian Higgs model Phys. Lett 329 39-574
  • [9] Witten E(1979)Instantons in anisotropic ferromagnets Acta Phys. Pol 56 571-28
  • [10] Damski B(2001)Variational approach to the Bäcklund transformations Acta Phys. Pol 32 17-2791