Finite rank Hankel operators over the complex Wiener space

被引:0
作者
Deck T. [1 ]
机构
[1] Universität Mannheim, Lehrstuhl für Mathematik V, D-68131 Mannheim
关键词
Holomorphic Wiener functionals; Small Hankel operators;
D O I
10.1007/s11118-004-6458-2
中图分类号
学科分类号
摘要
This work studies finite rank Hankel operators H b on a Hilbert space of holomorphic, square integrable Wiener functionals. The main tool to investigate these operators is their unitary equivalent representation on the Hilbert space of skeletons. The finite rank property is characterized in terms of a functional equation for the symbol b, which generalizes the well known equation b(z+w)=b(z)b(w). Also finite rank symbols of polynomial type are characterized in terms of their chaos expansions. © Springer 2005.
引用
收藏
页码:85 / 100
页数:15
相关论文
共 23 条
[1]  
Deck T., Hankel operators over the complex Wiener space, Potential Anal.
[2]  
Deck T., Hankel operators on Segal-Bargmann spaces, Proc. International Conf. in Hammamet, (2001)
[3]  
Deck T., Gross L., Hankel operators over complex manifolds, Pacific J. Math., 205, 1, pp. 43-97, (2002)
[4]  
Deck T., Potthoff J., Vage G., A review of white noise analysis from a probabilistic standpoint, Acta Appl. Math., 48, pp. 91-112, (1997)
[5]  
Elstrodt J., Maß- und Integrationstheorie, (1996)
[6]  
Gross L., Malliavin P., Hall's transform and the Segal-Bargmann map, Itô's Stochastic Calculus and Probability Theory, pp. 73-116, (1996)
[7]  
Hille E., Phillips R., Functional Analysis and Semi-Groups, (1957)
[8]  
Holland F., Rochberg R., Bergman kernels and Hankel forms on generalized Fock spaces, Contemporary Mathematics, 232, pp. 189-200, (1999)
[9]  
Holland F., Rochberg R., Bergman kernel asymptotics for generalized Fock spaces, J. Anal. Math., 83, pp. 207-242, (2001)
[10]  
Ito K., Complex multiple Wiener integral, Japan. J. Math., 22, pp. 63-86, (1952)