On periodic asymptotic equilibria of systems of nonlinear finite-difference equations

被引:0
作者
G. P. Pelyukh
机构
[1] National Academy of Sciences,Institute for Mathematics
来源
Differential Equations | 2010年 / 46卷
关键词
Periodic Solution; Vector Function; Contraction Mapping; Continuous Solution; Bounded Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain new sufficient conditions for the existence of periodic asymptotic equilibria of systems of nonlinear finite-difference equations with continuous argument.
引用
收藏
页码:607 / 611
页数:4
相关论文
共 9 条
[1]  
Agarwal R.P.(1998)On Stable Periodic Solutions of Difference Equations Appl. Math. Lett. 11 81-84
[2]  
Romanenko E.Yu.(1994)On the Structure of Continuous Solutions of a Class of Nonlinear Difference Equations Differ. Uravn. 30 1083-1085
[3]  
Pelyukh G.P.(1996)Representation of Solutions of Difference Equations with Continuous Argument Differ. Uravn. 32 304-312
[4]  
Pelyukh G.P.(2002)On the Existence of Periodic Solutions of Nonlinear Difference Equations Ukrain. Mat. Zh. 54 1626-1633
[5]  
Pelyukh G.P.(2002)On the Asymptotic Properties of Continuous Solutions of Systems of Nonlinear Functional-Difference Equations Dokl. Akad. Nauk 384 14-16
[6]  
Pelyukh G.P.(2006)On the Theory of Systems of Linear Difference Equations with Continuous Argument Dokl. Akad. Nauk 407 600-603
[7]  
Pelyukh G.P.(2004)Asymptotic Behavior of Solutions of a Nonlinear Difference Equation with Continuous Argument Ukrain. Mat. Zh. 56 1095-1100
[8]  
Stevic S.(2007)Investigation of the Structure of the Set of Continuous Solutions of Systems of Nonlinear Difference Equations with Continuous Argument Ukrain. Mat. Zh. 59 99-108
[9]  
Pelyukh G.P.(undefined)undefined undefined undefined undefined-undefined