A Hybrid Approach of Machine Learning and Lexicons to Sentiment Analysis: Enhanced Insights from Twitter Data of Natural Disasters

被引:0
作者
Shalak Mendon
Pankaj Dutta
Abhishek Behl
Stefan Lessmann
机构
[1] Electronic City,Wipro Limited
[2] Indian Institute of Technology Bombay,SJM School of Management
[3] Humboldt-Universität zu Berlin,Chair of Information Systems, School of Business and Economics
来源
Information Systems Frontiers | 2021年 / 23卷
关键词
Sentimental analysis; K-means clustering; Latent Dirichlet allocation; Machine learning; Twitter; Natural disasters;
D O I
暂无
中图分类号
学科分类号
摘要
The success factor of sentimental analysis lies in identifying the most occurring and relevant opinions among users relating to the particular topic. In this paper, we develop a framework to analyze users’ sentiments on Twitter on natural disasters using the data pre-processing techniques and a hybrid of machine learning, statistical modeling, and lexicon-based approach. We choose TF-IDF and K-means for sentiment classification among affinitive and hierarchical clustering. Latent Dirichlet Allocation, a pipeline of Doc2Vec and K-means used to capture themes, then perform multi-level polarity indices classification and its time series analysis. In our study, we draw insights from 243,746 tweets for Kerala’s 2018 natural disasters in India. The key findings of the study are the classification of sentiments based on similarity and polarity indices and identifying themes among the topics discussed on Twitter. We observe different sets of emotions and influencers, among others. Through this case example of Kerala floods, it shows how the government and other organizations could track the positive/negative sentiments concerning time and location; gain a better understanding of the topic of discussion trending among the public, and collaborate with crucial Twitter users/influencers to spread and figure out the gaps in the implementation of schemes in terms of design and execution. This research’s uniqueness is the streamlined and efficient combination of algorithms and techniques embedded in the framework used in achieving the above output, which can be integrated into a platform with GUI for further automation.
引用
收藏
页码:1145 / 1168
页数:23
相关论文
共 50 条
  • [41] Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data
    Naeem, Samreen
    Mashwani, Wali Khan
    Ali, Aqib
    Uddin, M. Irfan
    Mahmoud, Marwan
    Jamal, Farrukh
    Chesneau, Christophe
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 3451 - 3461
  • [42] Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning
    Leelawat, Natt
    Jariyapongpaiboon, Sirawit
    Promjun, Arnon
    Boonyarak, Samit
    Saengtabtim, Kumpol
    Laosunthara, Ampan
    Yudha, Alfan Kurnia
    Tang, Jing
    HELIYON, 2022, 8 (10)
  • [43] Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
    Rafeeque Pandarachalil
    Selvaraju Sendhilkumar
    G. S. Mahalakshmi
    Cognitive Computation, 2015, 7 : 254 - 262
  • [44] Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
    Pandarachalil, Rafeeque
    Sendhilkumar, Selvaraju
    Mahalakshmi, G. S.
    COGNITIVE COMPUTATION, 2015, 7 (02) : 254 - 262
  • [45] Sentiment Analysis and Comprehensive Evaluation of Supervised Machine Learning Models Using Twitter Data on Russia–Ukraine War
    Wadhwani G.K.
    Varshney P.K.
    Gupta A.
    Kumar S.
    SN Computer Science, 4 (4)
  • [46] A machine learning approach for urdu text sentiment analysis
    Akhtar, Muhammad
    Shoukat, Rana Saud
    Rehman, Saif Ur
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (02) : 75 - 87
  • [47] Utilizing Machine Learning in Sentiment Analysis: SentiRobo Approach
    Rohani, Vala Ali
    Shayaa, Shahid
    2ND INTERNATIONAL SYMPOSIUM ISTMET 2015 TECHNOLOGY MANAGEMENT & EMERGING TECHNOLOGIES, 2015,
  • [48] Improving Twitter Aspect-Based Sentiment Analysis Using Hybrid Approach
    Zainuddin, Nurulhuda
    Selamat, Ali
    Ibrahim, Roliana
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2016, PT I, 2016, 9621 : 151 - 160
  • [49] Comparative Analysis of Lexicon and Machine Learning Approach for Sentiment Analysis
    Srivastava, Roopam
    Bharti, P. K.
    Verma, Parul
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 71 - 77
  • [50] Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data
    Du, Jingcheng
    Xu, Jun
    Song, Hsing-Yi
    Tao, Cui
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2017, 17