The finite basis problem for Kauffman monoids

被引:0
|
作者
K. Auinger
Yuzhu Chen
Xun Hu
Yanfeng Luo
M. V. Volkov
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Lanzhou University,Department of Mathematics and Statistics
[3] Key Laboratory of Applied Mathematics and Complex Systems,Department of Mathematics and Statistics
[4] Chongqing Technology and Business University,Institute of Mathematics and Computer Science
[5] Ural Federal University,undefined
来源
Algebra universalis | 2015年 / 74卷
关键词
semigroup; involution semigroup; semigroup identity; variety; finite basis problem; Kauffman monoid; wire monoid; Rees matrix semigroup; Primary: 20M07;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a sufficient condition under which a semigroup admits no finite identity basis. As an application, it is shown that the identities of the Kauffman monoid Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}_n}$$\end{document} are nonfinitely based for each n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 3}$$\end{document}. This result holds also for the case when Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}_n}$$\end{document} is considered as an involution semigroup under either of its natural involutions.
引用
收藏
页码:333 / 350
页数:17
相关论文
共 50 条
  • [1] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [2] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [3] Finite basis problem for Annular monoids with rotation
    Zhang, Wen Ting
    Han, Bin Bin
    Luo, Yan Feng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [4] Finite basis problem for Lee monoids with involution
    Gao, Meng
    Zhang, Wen-Ting
    Luo, Yan-Feng
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4258 - 4273
  • [5] Finite basis problem for Catalan monoids with involution
    Gao, Meng
    Zhang, Wen Ting
    Luo, Yan Feng
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (06) : 1161 - 1177
  • [6] FINITE BASIS PROBLEM FOR INVOLUTION MONOIDS OF ORDER FIVE
    Han, Bin Bin
    Zhang, Wen Ting
    Luo, Yan Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 350 - 364
  • [7] On the finite basis problem for the monoids of triangular boolean matrices
    Li, Jian Rong
    Luo, Yan Feng
    ALGEBRA UNIVERSALIS, 2011, 65 (04) : 353 - 362
  • [8] On the finite basis problem for the monoids of triangular boolean matrices
    Jian Rong Li
    Yan Feng Luo
    Algebra universalis, 2011, 65 : 353 - 362
  • [9] Finite basis problem for 2-testable monoids
    Lee, Edmond W. H.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01): : 1 - 22
  • [10] Kauffman monoids
    Borisavljevic, M
    Dosen, K
    Petric, Z
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (02) : 127 - 143