Multidomain pseudospectral methods for nonlinear convection-diffusion equations

被引:0
|
作者
Yuan-yuan Ji
Hua Wu
He-ping Ma
Ben-yu Guo
机构
[1] Shanghai University,Department of Mathematics, College of Sciences
[2] Shanghai Normal University,Department of Mathematics, Mathematical and Science College
来源
Applied Mathematics and Mechanics | 2011年 / 32卷
关键词
multidomain; Legendre/Chebyshev collocation; convection-diffusion equation; O241.82; 65M70; 35L65; 35L50;
D O I
暂无
中图分类号
学科分类号
摘要
Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method, but the nonlinear term is collocated at the Legendre/Chebyshev-Gauss-Lobatto points inside each subinterval. Appropriate base functions are introduced so that the matrix of the system is sparse, and the method can be implemented efficiently and in parallel. The stability and the optimal rate of convergence of the methods are proved. Numerical results are given for both the single domain and the multidomain methods to make a comparison.
引用
收藏
页码:1255 / 1268
页数:13
相关论文
共 50 条
  • [1] Multidomain pseudospectral methods for nonlinear convection-diffusion equations
    纪园园
    吴华
    马和平
    郭本瑜
    Applied Mathematics and Mechanics(English Edition), 2011, 32 (10) : 1255 - 1268
  • [2] Multidomain pseudospectral methods for nonlinear convection-diffusion equations
    Ji, Yuan-yuan
    Wu, Hua
    Ma, He-ping
    Guo, Ben-yu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (10) : 1255 - 1268
  • [3] On the convergence of basic iterative methods for convection-diffusion equations
    Bey, J
    Reusken, A
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (05) : 329 - 352
  • [4] Critical Fujita exponents for a class of nonlinear convection-diffusion equations
    Guo, Wei
    Wang, Zejia
    Du, Runmei
    Wen, Lishu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 839 - 849
  • [5] Soution of Convection-Diffusion Equations
    Peng, Yamian
    Liu, Chunfeng
    Shi, Linan
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 546 - 555
  • [6] Efficient and accurate numerical methods for the multidimensional convection-diffusion equations
    Kong, Linghua
    Zhu, Pengfei
    Wang, Yushun
    Zeng, Zhankuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 162 : 179 - 194
  • [7] A note on Hermitian splitting induced relaxation methods for convection-diffusion equations
    Bhuruth, M
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1998, 14 (05) : 581 - 591
  • [8] New Finite Difference Methods for Singularly Perturbed Convection-diffusion Equations
    He, Xuefei
    Wang, Kun
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (04): : 949 - 978
  • [9] Performance of certain Krylov subspace methods for solving convection-diffusion equations
    Zhang, A
    Zhang, L
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 695 - 704
  • [10] A Class of Alternating Segment Crank–Nicolson Methods for Solving Convection-Diffusion Equations
    Wenqia Wang
    Computing, 2004, 73 : 41 - 55