The Multiplicity of Eigenvalues of the Hodge Laplacian on 5-Dimensional Compact Manifolds

被引:0
作者
Megan E. Gier
Peter D. Hislop
机构
[1] Grove City College,Department of Mathematics
[2] University of Kentucky,Department of Mathematics
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Hodge Laplacian; Eigenvalues; Multiplicity ; Forms; De Rham complex; 35R01; 58J50; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multiplicity of the eigenvalues of the Hodge Laplacian on smooth, compact Riemannian manifolds of dimension five for generic families of metrics. We prove that generically the Hodge Laplacian, restricted to the subspace of co-exact two-forms, has nonzero eigenvalues of multiplicity two. The proof is based on the fact that the Hodge Laplacian restricted to the subspace of co-exact two-forms is minus the square of the Beltrami operator, a first-order operator. We prove that for generic metrics the spectrum of the Beltrami operator is simple. Because the Beltrami operator in this setting is a skew-adjoint operator, this implies the main result for the Hodge Laplacian.
引用
收藏
页码:3176 / 3193
页数:17
相关论文
共 15 条
[1]  
Albert JH(1975)Genericity of simple eigenvalues for elliptic PDE’s Proc. Amer. Math. Soc. 48 413-418
[2]  
Aronszajn N(1957)A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order J. Math. Pures Appl. 36 235-249
[3]  
Aronszajn N(1962)A unique continuation theorem for exterior differential forms on Riemannian manifolds Ark. Mat. 4 417-453
[4]  
Krzywicki A(1980)Splitting the spectrum of a Riemannian manifold SIAM J. Math. Anal. 11 813-818
[5]  
Szarski J(1983)Pseudo-laplaciens II Annales de l’Institut Fourier 33 87-113
[6]  
Bleecker DD(2007)High energy limit of Laplace-type and Dirac-type eigenfunctions and frame flows Commun. Math. Phys. 270 813-833
[7]  
Wilson LC(2008)On the spectrum of geometric operators on Kähler manifolds J. Mod. Dyn. 2 701-718
[8]  
Colin de Verdière Y(1980)Remarks on the spectrum of the Laplace-Beltrami operator in the middle dimensions Tensor 34 94-96
[9]  
Jakobson D(1976)Generic properties of eigenfunctions Am. J. Math. 98 1059-1078
[10]  
Strohmaier A(undefined)undefined undefined undefined undefined-undefined