Caputo–Fabrizio fractional differential equations with non instantaneous impulses

被引:0
作者
Saïd Abbas
Mouffak Benchohra
Juan J. Nieto
机构
[1] University of Saïda–Dr. Moulay Tahar,Department of Mathematics
[2] Djillali Liabes University of Sidi Bel-Abbès,Laboratory of Mathematics
[3] Universidade de Santiago de Compostela,Departamento de Estatistica, Análise Matemática e Optimización, Instituto de Matemáticas
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2022年 / 71卷
关键词
Ractional differential equation; Caputo–Fabrizio integral of fractional order; Caputo–Fabrizio fractional derivative; Not instantaneous impulse; Measure of noncompactness; Fixed point; 26A33; 34A37; 34G20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with some existence results based on Schauder’s and Monch’s fixed point theorems and the technique of the measure of noncompactness for Cauchy problem of Caputo–Fabrizio fractional differential equations with not instantaneous impulses. Some illustrative examples are presented in the last section.
引用
收藏
页码:131 / 144
页数:13
相关论文
共 50 条
[21]   FRACTIONAL ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES [J].
Wang, Jinrong ;
Deng, Jiahua ;
Wei, Wei .
FIXED POINT THEORY, 2016, 17 (01) :189-200
[22]   CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES [J].
Abbas, Said ;
Benchohra, Mouffak ;
Hamidi, Naima ;
Henderson, Johnny .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) :1027-1045
[23]   Caputo-Hadamard Fractional Differential Equations in Banach Spaces [J].
Saïd Abbas ;
Mouffak Benchohra ;
Naima Hamidi ;
Johnny Henderson .
Fractional Calculus and Applied Analysis, 2018, 21 :1027-1045
[24]   THE EXISTENCE OF POSITIVE SOLUTIONS AND A LYAPUNOV TYPE INEQUALITY FOR BOUNDARY VALUE PROBLEMS OF THE FRACTIONAL CAPUTO-FABRIZIO DIFFERENTIAL EQUATIONS [J].
Toprakseven, Suayip .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04) :1125-1133
[25]   NEW STABILITY RESULTS FOR PARTIAL FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NOT INSTANTANEOUS IMPULSES [J].
Abbas, Said ;
Benchohra, Mouffak ;
Darwish, Mohamed Abdalla .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :172-191
[26]   New Stability Results for Partial Fractional Differential Inclusions with Not Instantaneous Impulses [J].
Saïd Abbas ;
Mouffak Benchohra ;
Mohamed Abdalla Darwish .
Fractional Calculus and Applied Analysis, 2015, 18 :172-191
[27]   Application of Measure of Noncompactness On Integral Equations Involving Generalized Proportional Fractional and Caputo-Fabrizio Fractional Integrals [J].
Das, Anupam ;
Hazarika, Bipan ;
Parvanah, Vahid ;
Mahato, Nihar Kumar .
FILOMAT, 2022, 36 (17) :5885-5893
[28]   EXISTENCE RESULTS FOR DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER AND IMPULSES [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Slimani, Boualem Attou .
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2008, 44 :1-21
[29]   A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative [J].
Dumitru Baleanu ;
Hakimeh Mohammadi ;
Shahram Rezapour .
Advances in Difference Equations, 2020
[30]   ON AN ANTI-PERIODIC BOUNDARY VALUE PROBLEM FOR A CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL INCLUSION [J].
Cernea, Aurelian .
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2025, 94 :45-58