A stochastic optimization algorithm for analyzing planar central and balanced configurations in the n-body problem

被引:0
作者
Alexandru Doicu
Lei Zhao
Adrian Doicu
机构
[1] Universität Ausgburg,Institut für Mathematik
[2] Deutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Methodik der Fernerkundung (IMF)
来源
Celestial Mechanics and Dynamical Astronomy | 2022年 / 134卷
关键词
Central configuration; Balanced configuration; Stochastic optimization; Morse equality; Krawczyk operator;
D O I
暂无
中图分类号
学科分类号
摘要
A stochastic optimization algorithm for analyzing planar central and balanced configurations in the n-body problem is presented. We find a comprehensive list of equal mass central configurations satisfying the Morse equality up to n=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=12$$\end{document}. We show some exemplary balanced configurations in the case n=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=5$$\end{document}, as well as some balanced configurations without any axis of symmetry in the cases n=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4$$\end{document} and n=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=10$$\end{document}.
引用
收藏
相关论文
共 67 条
  • [1] Albouy A(1998)Le problème des Invent. Math. 131 151-184
  • [2] Chenciner A(2012) corps et les distances mutuelles Ann. Math. 176 535-588
  • [3] Albouy A(1994)Finiteness of central configurations of five bodies in the plane J. Global Optim. 5 349-358
  • [4] Kaloshin V(1982)Topographical multilevel single linkage Math. Program. 22 125-140
  • [5] Ali MM(1987)A stochastic method for global optimization Math. Program. 37 59-80
  • [6] Storey C(1995)Bayesian stopping rules for multistart global optimization methods SIAM J. Sci. Comput. 16 1190-1208
  • [7] Boender CGE(2017)A limited memory algorithm for bound constrained optimization Regul. Chaot. Dyn. 22 677-687
  • [8] Kan AHGR(1981)Are nonsymmetric balanced configurations of four equal masses virtual or real? ACM Trans. Math. Softw. 7 348-368
  • [9] Timmer GT(2012)An adaptive nonlinear least-squares algorithm Comput. Math. with Appl. 64 1886-1902
  • [10] Stougie L(2010)An opposition-based chaotic ga/pso hybrid algorithm and its application in circle detection Numer. Math. Theory Methods Appl. 3 119-142