Universal Subspaces for Local Unitary Groups of Fermionic Systems

被引:0
作者
Lin Chen
Jianxin Chen
Dragomir Ž. Đoković
Bei Zeng
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] University of Waterloo,Institute for Quantum Computing
[3] National University of Singapore,Center for Quantum Technologies
[4] University of Guelph,Department of Mathematics and Statistics
[5] Singapore University of Technology and Design,undefined
来源
Communications in Mathematical Physics | 2015年 / 333卷
关键词
Unitary Group; Fermionic System; Complex Hilbert Space; Slater Determinant; Entanglement Property;
D O I
暂无
中图分类号
学科分类号
摘要
Let V=∧NV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}=\wedge^{N} V}$$\end{document} be the N-fermion Hilbert space with M-dimensional single particle space V and 2N ≤ M. We refer to the unitary group G of V as the local unitary (LU) group. We fix an orthonormal (o.n.) basis |v1⟩,...,|vM〉 of V. Then the Slater determinants ei1,⋯,iN:=|vi1∧vi2∧⋯∧viN⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e_{i_1,\cdots,i_N}:= |{v_{i_1}\wedge v_{i_2} \wedge\cdots\wedge v_{i_N}}\rangle}$$\end{document} with i1 < ... < iN form an o.n. basis of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}}$$\end{document} . Let S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}\subseteq\mathcal{V}}$$\end{document} be the subspace spanned by all ei1,⋯,iN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e_{i_1,\cdots,i_N}}$$\end{document} such that the set {i1,...,iN} contains no pair {2k−1,2k}, k an integer. We say that the |ψ⟩∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|{\psi}\rangle \in\mathcal{S}}$$\end{document} are single occupancy states (with respect to the basis |v1⟩,...,|vM⟩). We prove that for N = 3 the subspace S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} is universal, i.e., each G-orbit in V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}}$$\end{document} meets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} , and that this is false for N > 3. If M is even, the well known BCS states are not LU-equivalent to any single occupancy state. Our main result is that for N = 3 and M even there is a universal subspace W⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}\subseteq\mathcal{S}}$$\end{document} spanned by M(M−1)(M−5)/6 states ei1,…,iN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e_{i_1,\ldots,i_N}}$$\end{document} . Moreover, the number M(M−1)(M−5)/6 is minimal.
引用
收藏
页码:541 / 563
页数:22
相关论文
共 64 条
[1]  
Horodecki R.(2009)Quantum entanglement Rev. Mod. Phys. 81 865-942
[2]  
Horodecki P.(2008)Entanglement in many-body systems Rev. Mod. Phys. 80 517-576
[3]  
Horodecki M.(2000)Generalized Schmidt decomposition and classification of three-quantum-bit States Phys. Rev. Lett. 85 1560-1563
[4]  
Horodecki K.(2001)Three-qubit pure-state canonical forms J. Phys. A Math. Gen. 34 6725-7939
[5]  
Amico L.(2000)Multipartite generalisation of the Schmidt decomposition J. Math. Phys. 41 7932-127
[6]  
Fazio R.(2001)Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots Phys. Rev. B 63 085311-686
[7]  
Osterloh A.(2001)Quantum correlations in two-fermion systems Phys. Rev. A 64 022303-15
[8]  
Vedral V.(2001)Entanglement in a two-identical-particle system Phys. Rev. A 64 054302-F967
[9]  
Acin A.(2001)Quantum correlations in two-boson wave functions Phys. Rev. A 64 042310-164
[10]  
Andrianov A.(2002)Quantum correlations in systems of indistinguishable particles Ann. Phys. 229 88-322