Spectral Estimates for the Fourth-Order Operator with Matrix Coefficients

被引:0
作者
D. M. Polyakov
机构
[1] Southern Mathematical Institute,
[2] Vladikavkaz Scientific Center,undefined
[3] Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2020年 / 60卷
关键词
fourth-order differential operator; asymptotics of eigenvalues; matrix coefficients; arithmetic mean of eigenvalues;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1163 / 1184
页数:21
相关论文
共 24 条
  • [1] Birkhoff G. D.(1923)The boundary-value problems and developments associated with a system of ordinary linear differential equations of the first order Proc. Amer. Acad. 58 51-128
  • [2] Langer R. E.(1958)A survey of the theory of spectral operators Bull. Amer. Math. Soc. 64 217-274
  • [3] Dunford N.(1979)On the basis problem of the eigenfunctions of an ordinary differential operator Russ. Math. Surveys. 34 249-250
  • [4] Shkalikov A. A.(2007)Non-self-adjoint Sturm–Liouville operators with matrix potentials Math. Notes 81 440-448
  • [5] Veliev O. A.(2015)On spectral properties of Sturm–Liouville operator with matrix potential Ufa Math. J. 7 84-94
  • [6] Uskova N. B.(2008)Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients Bound. Value Probl. 2008 628973-672
  • [7] Veliev O. A.(2011)On the basis property of the root functions of differential operators with matrix coefficients Cent. Eur. J. Math. 9 657-190
  • [8] Veliev O. A.(2014)On non-self-adjoint Sturm–Liouville operators in the space of vector functions Math. Notes. 95 180-39
  • [9] Seref F.(1983)Methods of abstract harmonic analysis in the perturbation theory of linear operators Sib. Mat. Zh. 24 21-43
  • [10] Veliev O. A.(2017)The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential Sb. Math. 208 1-1176