A massive compact quiescent galaxy at z = 2 with a complete Einstein ring in JWST imaging

被引:0
作者
Pieter van Dokkum
Gabriel Brammer
Bingjie Wang
Joel Leja
Charlie Conroy
机构
[1] Yale University,Department of Astronomy
[2] Cosmic Dawn Center (DAWN),Niels Bohr Institute
[3] University of Copenhagen,Department of Astronomy & Astrophysics
[4] The Pennsylvania State University,Institute for Computational & Data Sciences
[5] The Pennsylvania State University,undefined
[6] Harvard-Smithsonian Center for Astrophysics,undefined
来源
Nature Astronomy | 2024年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
One of the surprising results from the Hubble Space Telescope was the discovery that many of the most massive galaxies at redshift z ≈ 2 are very compact, having a half-light radius of only 1−2 kpc. The interpretation is that massive galaxies formed inside out, with their cores largely in place by z ≈ 2 and approximately half of their present-day mass added later through minor mergers. Here we present a compact, massive, quiescent galaxy at a photometric redshift of zphot=1.94−0.17+0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z}_{{{{\rm{phot}}}}}=1.9{4}_{-0.17}^{+0.13}$$\end{document} with a complete Einstein ring. The ring was found in the James Webb Space Telescope COSMOS-Web survey and is produced by a background galaxy at zphot=2.98−0.47+0.42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z}_{{{{\rm{phot}}}}}=2.9{8}_{-0.47}^{+0.42}$$\end{document}. Its 1.54″ diameter provides a direct measurement of the mass of the ‘pristine’ core of a massive galaxy, observed before the mixing and dilution of its stellar population during the 10 Gyr of galaxy evolution between z = 2 and z = 0. We find a mass for the lens Mlens=6.5−1.5+3.7×1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{{{\rm{lens}}}}}=6.{5}_{-1.5}^{+3.7}\times 1{0}^{11}$$\end{document} M⊙ within a radius of 6.6 kpc. The stellar mass within the same radius is Mstars=1.1−0.3+0.2×1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{{{\rm{stars}}}}}=1.{1}_{-0.3}^{+0.2}\times 1{0}^{11}$$\end{document} M⊙ for a Chabrier initial mass function and the fiducial dark matter mass is Mdm=2.6−0.7+1.6×1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{{{\rm{dm}}}}}=2.{6}_{-0.7}^{+1.6}\times 1{0}^{11}$$\end{document} M⊙. Additional mass appears to be needed to explain the lensing results, either in the form of a higher-than-expected dark matter density or a bottom-heavy initial mass function.
引用
收藏
页码:119 / 125
页数:6
相关论文
共 126 条
  • [1] Casey CM(2023)COSMOS-Web: an overview of the JWST Cosmic Origins Survey Astrophys. J. 954 31-152
  • [2] Fruchter AS(2002)Drizzle: a method for the linear reconstruction of undersampled images Publ. Astron. Soc. Pac. 114 144-724
  • [3] Hook RN(1993)A gravitationally lensed ring in MG 1549+3047 Astron. J. 105 847-4784
  • [4] Lehar J(2006)The Sloan lens ACS survey. I. A large spectroscopically selected sample of massive early-type lens galaxies Astrophys. J. 638 703-59
  • [5] Langston GI(2018)AutoLens: automated modeling of a strong lens’s light, mass, and source Mon. Not. R. Astron. Soc. 478 4738-795
  • [6] Silber A(2001)The importance of Einstein rings Astrophys. J. 547 50-697
  • [7] Lawrence CR(2021)Stellar population inference with Prospector Astrophys. J. Suppl. Ser. 254 22-488
  • [8] Burke BF(2003)Galactic stellar and substellar initial mass function Publ. Astron. Soc. Pac. 115 763-552
  • [9] Bolton AS(2005)Passively evolving early-type galaxies at 1.4 ≲  Astrophys. J. 626 680-508
  • [10] Burles S(2014) ≲ 2.5 in the Hubble ultra deep field Astrophys. J. 788 28-2178