Techniques of Constructions of Variations of Mixed Hodge Structures

被引:0
作者
Hisashi Kasuya
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
[2] Institut de Mathtématiques de Jussieu – Paris Rive Gauche,undefined
来源
Geometric and Functional Analysis | 2018年 / 28卷
关键词
Variation of mixed Hodge structure; Mixed Hodge structure on Sullivan’s 1-minimal model; Flat bundle; Hodge theory; Kähler manifold; Primary 14D07; 58A14; 53C55; Secondary 55P62; 55N25;
D O I
暂无
中图分类号
学科分类号
摘要
We give a way of constructing real variations of mixed Hodge structures over compact Kähler manifolds by using mixed Hodge structures on Sullivan’s 1-minimal models of certain differential graded algebras associated with real variations of Hodge structures.
引用
收藏
页码:393 / 442
页数:49
相关论文
共 10 条
[1]  
Deligne P(1971)Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math 40 5-57
[2]  
Goldman WM(1988)The deformation theory of representations of fundamental groups of compact Kähler manifolds Inst. Hautes Études Sci. Publ. Math. 67 43-96
[3]  
Millson JJ(1978)The algebraic topology of smooth algebraic varieties Inst. Hautes tudes Sci. Publ. Math. 48 137-204
[4]  
Morgan JW(1986)Correction to “The algebraic topology of smooth algebraic varieties” Inst. Hautes Études Sci. Publ. Math. 64 185-233
[5]  
Morgan JW(1969)Representations of solvable Lie algebras Mich. Math. J. 16 227-139
[6]  
Reed BE(1965)On the first cohomology of discrete subgroups of semisimple Lie groups Am. J. Math. 87 103-222
[7]  
Raghunathan MS(1968)Functors of Artin rings Trans. Am. Math. Soc. 130 208-331
[8]  
Schlessinger M(1978)Infinitesimal computations in topology. Inst. Hautes Publ. Math. 47 269-94
[9]  
Sullivan D(1973)tudes Sci J. Differ. Geom. 8 85-undefined
[10]  
Watson B(undefined)Manifold maps commuting with the Laplacian undefined undefined undefined-undefined