Harmonic unit normal sections of Grassmannians associated with cross products

被引:0
作者
Francisco Ferraris
Ruth Paola Moas
Marcos Salvai
机构
[1] Av. Medina Allende s/n,FaMAF, Universidad Nacional de Córdoba
[2] Ciudad Universitaria,CIEM, CONICET, Av. Medina Allende s/n
[3] Ciudad Universitaria,undefined
来源
Revista Matemática Complutense | 2023年 / 36卷
关键词
Harmonic map; Grassmannian; Cross product; Octonions; Rough Laplacian; Almost complex structure; 17A35; 53C15; 53C30; 53C43; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\left( k,n\right) $$\end{document} be the Grassmannian of oriented subspaces of dimension k of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}$$\end{document} with its canonical Riemannian metric. We study the energy of maps assigning to each P∈Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\in G\left( k,n\right) $$\end{document} a unit vector normal to P. They are sections of a sphere bundle Ek,n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,n}^{1}$$\end{document} over Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\left( k,n\right) $$\end{document}. The octonionic double and triple cross products induce in a natural way such sections for k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}, n=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=7$$\end{document} and k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, n=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document}, respectively. We prove that they are harmonic maps into Ek,n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{k,n}^{1}$$\end{document} endowed with the Sasaki metric. This, together with the well-known result that Hopf vector fields on odd dimensional spheres are harmonic maps into their unit tangent bundles, allows us to conclude that all unit normal sections of the Grassmannians associated with cross products are harmonic. In a second instance we analyze the energy of maps assigning an orthogonal complex structure JP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\left( P\right) $$\end{document} on P⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\bot }$$\end{document} to each P∈G2,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\in G\left( 2,8\right) $$\end{document}. We prove that the one induced by the octonionic triple product is a harmonic map into a suitable sphere bundle over G2,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\left( 2,8\right) $$\end{document}. This generalizes the harmonicity of the canonical almost complex structure of S6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{6}$$\end{document}.
引用
收藏
页码:443 / 468
页数:25
相关论文
共 35 条
[1]  
Abbassi MTK(2011)Harmonic sections of tangent bundles equipped with Riemannian Q. J. Math. 62 259-288
[2]  
Calvaruso G(2007)-natural metrics Geom. Dedicata 127 75-85
[3]  
Perrone D(1953)Orthogonal almost-complex structures of minimal energy Am. J. Math. 75 409-448
[4]  
Bor G(1967)Groupes de Lie et puissances réduites de Steenrod Comment. Math. Helv. 42 222-236
[5]  
Hernández-Lamoneda L(2004)Vector cross products Israel J. Math. 143 253-279
[6]  
Salvai M(2001)Harmonicity and minimality of oriented distributions Differ. Geom. Appl. 15 137-152
[7]  
Borel A(2001)Relationship between volume and energy of vector fields Math. Ann. 320 531-545
[8]  
Serre J-P(1986)Second variation of volume and energy of vector fields. Stability of Hopf vector fields Comment. Math. Helv. 61 177-192
[9]  
Brown RB(2018)On the volume of a unit vector field on the three-sphere Forum Math. 30 785-798
[10]  
Gray A(2014)Harmonicity and minimality of complex and quaternionic radial foliations Rev. Mat. Iberoam. 30 247-275