A Characterisation of the Generalized Quadrangle Q (5, q) Using Cohomology

被引:0
作者
Matthew R. Brown
机构
[1] Ghent University,Department of Pure Mathematics and Computer Algebra
来源
Journal of Algebraic Combinatorics | 2002年 / 15卷
关键词
generalized quadrangle; subquadrangle; cohomology; ovoid;
D O I
暂无
中图分类号
学科分类号
摘要
If a GQ S′ of order (s, s) is contained in a GQ S of order (s, s2) as a subquadrangle, then for each point X of S\S′ the set of points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O_x $$ \end{document} of S′ collinear with X form an ovoid of S′. Thas and Payne proved that if S′= \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q$$ \end{document}(4,q),q even, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O_x $$ \end{document} is an elliptic quadric for each X∈S\S′,thenS≅ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q$$ \end{document}(5,q). In this paper we provide a single proof for the q odd and q even cases by establishing a link between the geometry involved and the first cohomology group of a related simplicial complex.
引用
收藏
页码:107 / 125
页数:18
相关论文
共 12 条
  • [1] Brown M.R.(1995)Generalized quadrangles of order Geom. Dedicata 56 299-306
  • [2] Brown M.R.(1998) even, containing Bull. Belg. Math. Soc. Simon Stevin 5 187-205
  • [3] Cameron P.J.(1991) as a subquadrangle Discrete Math. 97 83-92
  • [4] Hirschfeld J.W.P.(1980)Semipartial geometries and generalized quadrangles of order Proc. London Math. Soc 41 254-278
  • [5] Thas J.A.(1980)Covers of graphs and EGQs Canad. J. Math. 34 1195-1203
  • [6] Kantor W.M.(1986)Sets of type Math. Z. 192 45-50
  • [7] Kantor W.M.(1973)1 Bull. Amer. Math. Soc. 70 747-748
  • [8] Payne S.E.(1974) + 1 Simon Stevin 48 65-68
  • [9] Thas J.A.(1998) in PG Rend. Circ. Mat. Palermo 2 199-218
  • [10] Thas J.A.(1994)Ovoids and translation planes Geom. Dedicata 52 227-253