Upper Quantum Lyapunov Exponent and Anosov Relations for Quantum Systems Driven by a Classical Flow

被引:0
作者
O. Sapin
H. R. Jauslin
Stefan Weigert
机构
[1] Université de Bourgogne,Laboratoire de Physique CNRS
[2] University of York, UMR 5027
来源
Journal of Statistical Physics | 2007年 / 127卷
关键词
quantum dynamics; Lyapunov exponents; Anosov systems; parametric oscillators; quantum chaos; Arnold’s cat map;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapunov exponents are positive and equal to the Lyapunov exponent of the corresponding classical parametric oscillators. As second example, we show that the configurational quantum cat system satisfies quantum Anosov properties.
引用
收藏
页码:699 / 719
页数:20
相关论文
共 39 条
[1]  
Emch G. G.(1994)Anosov actions on noncommutative algebras. J. Math. Phys. 35 5582-5599
[2]  
Narnhofer H.(2003)Control of quantum dynamics by laser pulses: Adiabatic Floquet theory Adv. Chem. Phys. 125 147-267
[3]  
Thirring W.(1974)Stationary scattering theory for time-dependent Hamiltonians Math. Ann. 207 315-335
[4]  
Sewell G. L.(1991)Spectral and stability aspects of quantum chaos Chaos 1 114-121
[5]  
Guérin S.(2004)Upper quantum Lyapunov exponent and parametric oscillators J. Math. Phys. 45 4377-4385
[6]  
Jauslin H. R.(1984)Lyapunov numbers for the almost periodic Schrödinger equation Illinois J. Math. 28 54-78
[7]  
Howland J. S.(1986)Exponential dichotomy, rotation number and linear differential operators with bounded coefficients J. Differ. Equations 61 54-78
[8]  
Jauslin H. R.(1987)-functions and Floquet exponents for linear differential systems Ann. Mat. Pur. Appl. 147 211-248
[9]  
Lebowitz J. L.(1982)The rotation number for almost periodic potentials Commun. Math. Phys. 84 403-438
[10]  
Jauslin H. R.(1994)Exponential dichotomy and rotation number for linear Hamiltonian systems J. Differ. Equations 108 201-216