Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality

被引:0
作者
Shaoyuan Xu
Stojan Radenović
机构
[1] Hanshan Normal University,Department of Mathematics and Statistics
[2] University of Belgrade,Faculty of Mechanical Engineering
来源
Fixed Point Theory and Applications | / 2014卷
关键词
cone metric spaces over Banach algebras; non-normal cones; fixed point theorems; generalized Lipschitz mappings; -sequences; spectral radius;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first present some elementary results concerning cone metric spaces over Banach algebras. Next, by using these results and the related ones about c-sequence on cone metric spaces we obtain some new fixed point theorems for the generalized Lipschitz mappings on cone metric spaces over Banach algebras without the assumption of normality. As a consequence, our main results improve and generalize the corresponding results in the recent paper by Liu and Xu (Fixed Point Theory Appl. 2013:320, 2013).
引用
收藏
相关论文
共 31 条
  • [1] Huang L-G(2007)Cone metric spaces and fixed point theorems of contractive mappings J. Math. Anal. Appl 332 1468-1476
  • [2] Zhang X(2008)Some notes on the paper ‘Cone metric spaces and fixed point theorems of contractive mappings’ J. Math. Anal. Appl 345 719-724
  • [3] Rezapour S(2012)Fixed points for contraction mappings in generalized cone metric spaces Jordan J. Math. Stat 5 291-307
  • [4] Hamlbarani R(2012)Quasi-contractions on a nonnormal cone metric space Funct. Anal. Appl 46 75-79
  • [5] Al-Khaleel M(2009)Quasi-contraction on a cone metric space Appl. Math. Lett 22 728-731
  • [6] Al-Sharifa S(2009)Remarks on ‘Quasi-contraction on a cone metric space’ Appl. Math. Lett 22 1674-1679
  • [7] Khandaqji M(2009)Fixed point theorem for two non-self mappings in cone metric spaces Comput. Math. Appl 57 1701-1707
  • [8] Gajić L(2011)On the cone metric space: a survey Nonlinear Anal 74 2591-2601
  • [9] Rakočević V(2012)On an equivalence of topological vector space valued cone metric spaces and metric spaces Appl. Math. Lett 25 429-433
  • [10] Ilić D(2010)A note on cone metric fixed point theory and its equivalence Nonlinear Anal 72 2259-2261