Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review

被引:0
作者
David Nickson
Caroline Meyer
Lukasz Walasek
Carla Toro
机构
[1] WMG,Department of Psychology
[2] University of Warwick,undefined
[3] Warwick Medical School,undefined
[4] University of Warwick,undefined
[5] University of Warwick,undefined
来源
BMC Medical Informatics and Decision Making | / 23卷
关键词
Artificial Intelligence; Depression; Diagnosis; Electronic Health Records; Machine Learning; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 343 条
[1]  
Lim GY(2018)Prevalence of depression in the community from 30 countries between 1994 and 2014 Sci Rep 8 2861-178
[2]  
Tam WW(2016)Estimating the true global burden of mental illness Lancet Psychiatry 3 171-160
[3]  
Lu Y(2013)Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010 PLOS Med 10 153-770
[4]  
Ho CS(2014)Risks of all-cause and suicide mortality in mental disorders: a meta-review World Psychiatry 13 761-622
[5]  
Zhang MW(2013)The size, burden and cost of disorders of the brain in the UK J Psychopharmacol (Oxf) 27 616-318
[6]  
Ho RC(2006)Clinical staging of psychiatric disorders: a heuristic framework for choosing earlier, safer and more effective interventions Aust N Z J Psychiatry 40 310-132
[7]  
Vigo D(2015)Early intervention in psychosis J Nerv Ment Dis 203 124-1077
[8]  
Thornicroft G(1995)A comparison of two structured diagnostic interviews: CIDI and SCAN Aust N Z J Psychiatry 29 1069-370
[9]  
Atun R(1988)The composite international diagnostic interview: an epidemiologic instrument suitable for use in conjunction with different diagnostic systems and in different cultures Arch Gen Psychiatry 45 361-466
[10]  
Ferrari AJ(1983)The hospital anxiety and depression scale Acta Psychiatr Scand 67 S454-571