The fractional matching preclusion number of complete n-balanced k-partite graphs

被引:0
|
作者
Yu Luan
Mei Lu
Yi Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Beijing University of Posts and Telecommunications,School of Sciences
来源
Journal of Combinatorial Optimization | 2022年 / 44卷
关键词
Fractional matching preclusion number; -balanced ; -partite graph; Fractional perfect matching;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional matching preclusion number of a graph G, denoted by fmp(G), is the minimum number of edges whose deletion results in a graph with no fractional perfect matchings. Let Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{k,n}$$\end{document} be the complete n-balanced k-partite graph, whose vertex set can be partitioned into k parts, each has n vertices and whose edge set contains all edges between two distinct parts. In this paper, we prove that if k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} or 5 and n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, then fmp(Gk,n)=δ(Gk,n)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})-1$$\end{document}; otherwise fmp(Gk,n)=δ(Gk,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})$$\end{document}.
引用
收藏
页码:1323 / 1329
页数:6
相关论文
共 10 条
  • [1] The fractional matching preclusion number of complete n-balanced k-partite graphs
    Luan, Yu
    Lu, Mei
    Zhang, Yi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1323 - 1329
  • [2] Fractional matching preclusion number of graphs?
    Zou, Jinyu
    Mao, Yaping
    Wang, Zhao
    Cheng, Eddie
    DISCRETE APPLIED MATHEMATICS, 2022, 311 : 142 - 153
  • [3] Fractional matching preclusion of graphs
    Yan Liu
    Weiwei Liu
    Journal of Combinatorial Optimization, 2017, 34 : 522 - 533
  • [4] Fractional matching preclusion of graphs
    Liu, Yan
    Liu, Weiwei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 522 - 533
  • [5] On finding k-cliques in k-partite graphs
    M. Mirghorbani
    P. Krokhmal
    Optimization Letters, 2013, 7 : 1155 - 1165
  • [6] Fractional matching preclusion of the restricted HL-graphs
    Shunzhe Zhang
    Huiqing Liu
    Dong Li
    Xiaolan Hu
    Journal of Combinatorial Optimization, 2019, 38 : 1143 - 1154
  • [7] Fractional matching preclusion of the restricted HL-graphs
    Zhang, Shunzhe
    Liu, Huiqing
    Li, Dong
    Hu, Xiaolan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (04) : 1143 - 1154
  • [8] Fractional matching preclusion numbers of Cartesian product graphs
    Luan, Yu
    Lu, Mei
    Zhang, Yi
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 100 - 112
  • [9] Packing 5-cycles into balanced complete m-partite graphs for odd m
    Ming-Hway Huang
    Chin-Mei Fu
    Hung-Lin Fu
    Journal of Combinatorial Optimization, 2007, 14 : 323 - 329
  • [10] Fractional matching number and spectral radius of nonnegative matrices of graphs
    Liu, Ruifang
    Lai, Hong-Jian
    Guo, Litao
    Xue, Jie
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) : 4133 - 4145