Existence of positive solutions to negative power nonlinear integral equations with weights

被引:0
作者
Hang Chen
Qianqiao Guo
Qian Wang
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
Boundary Value Problems | / 2020卷
关键词
Reversed Sharp Hardy–Littlewood–Sobolev inequality; Positive solution; Integral equation; 45G05; 35A15; 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the existence and non-existence of positive solutions to the following negative power nonlinear integral equation related to the sharp reversed Hardy–Littlewood–Sobolev inequality: fq−1(x)=∫ΩK(x)f(y)K(y)|x−y|n−αdy+λ∫ΩG(x)f(y)G(y)|x−y|n−α−βdy,f≥0,x∈Ω‾,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f^{q-1}(x)= \int _{\varOmega }\frac{K(x)f(y)K(y)}{ \vert x-y \vert ^{n-\alpha }}\,dy+ \lambda \int _{\varOmega }\frac{G(x)f(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy, \quad f\geq 0, x\in \overline{ \varOmega }, $$\end{document} where 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< q<1$\end{document}, α>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha >n$\end{document}, 0<β<α−n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\beta <\alpha -n$\end{document}, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \mathbb{R}$\end{document}, Ω is a smooth bounded domain, K(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x)$\end{document}, G(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G(x)$\end{document} are positive continuous functions in Ω̅. For K≡G≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K\equiv G\equiv 1$\end{document}, the existence and non-existence of positive solutions to the equation have been studied by Dou–Guo–Zhu (2019). In this paper we consider the existence and non-existence of positive solutions to the above integral equation with the general weight functions K(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x)$\end{document}, G(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G(x)$\end{document}.
引用
收藏
相关论文
共 14 条
[1]  
Dou J.(2019)Nonlinear integral equations on bounded domains J. Funct. Anal. 277 111-134
[2]  
Zhu M.(2020)Existence of positive solutions to integral equations with weights Appl. Math. Lett. 102 565-606
[3]  
Guo Q.(1928)Some properties of fractional integrals (1) Math. Z. 27 34-39
[4]  
Wang Q.(1930)On certain inequalities connected with the calculus of variations J. Lond. Math. Soc. 5 349-374
[5]  
Hardy G.H.(1983)Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities Ann. Math. 118 471-479
[6]  
Littlewood J.E.(1938)On a theorem of functional analysis Mat. Sb. (N.S.) 4 1-28
[7]  
Hardy G.H.(2015)Functionals for multilinear fractional embedding Acta Math. Sin. Engl. Ser. 31 9696-9726
[8]  
Littlewood J.E.(2015)Reversed Hardy–Littlewood–Sobolev inequality Int. Math. Res. Not. 2015 8258-8280
[9]  
Lieb E.H.(2019)Blowup analysis for integral equations on bounded domains J. Differ. Equ. 266 undefined-undefined
[10]  
Sobolev S.L.(undefined)undefined undefined undefined undefined-undefined