Endomorphism Rings Via Minimal Morphisms

被引:0
作者
Manuel Cortés-Izurdiaga
Pedro A. Guil Asensio
D. Keskin Tütüncü
Ashish K. Srivastava
机构
[1] Universidad de Almerí,Departamento de Matemáticas
[2] Universidad de Murcia,Departamento de Mathematicas
[3] Hacettepe University,Department of Mathematics
[4] Saint Louis University,Department of Mathematics and Statistics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Endomorphism ring; Ziegler partial morphism; approximations; automorphism-invariant; 16W20; 16D90; 16D50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if u:K→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:K \rightarrow M$$\end{document} is a left minimal extension, then there exists an isomorphism between two subrings, EndRM(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}_R^M(K)$$\end{document} and EndRK(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}_R^K(M)$$\end{document} of EndR(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}_R(K)$$\end{document} and EndR(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}_R(M)$$\end{document}, respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M,  or when K is invariant under automorphisms of M.
引用
收藏
相关论文
共 18 条
[1]  
Bühler T(2010)Exact categories Expos. Math. 28 1-69
[2]  
Faith C(1964)Quasi-injective modules and their endomorphism rings Arch. Math. (Basel) 15 166-174
[3]  
Utumi Y(2013)Ideal approximation theory Adv. Math. 244 750-790
[4]  
Fu XH(2018)The Schröder–Bernstein problem for modules J. Algebra 498 153-164
[5]  
Guil Asensio PA(2015)Modules invariant under automorphisms of their covers and envelopes Isr. J. Math. 206 457-482
[6]  
Herzog I(2013)Automorphism-invariant modules satisfy the exchange property J. Algebra 388 101-106
[7]  
Torrecillas B(1961)Quasi-injective modules and irreducible rings J. Lond. Math. Soc. 36 260-268
[8]  
Guil Asensio PA(1984)Model theory of modules Ann. Pure Appl. Log. 26 149-213
[9]  
Kalebog̃az B(undefined)undefined undefined undefined undefined-undefined
[10]  
Srivastava AK(undefined)undefined undefined undefined undefined-undefined