Heat Kernels of Non-symmetric Jump Processes: Beyond the Stable Case

被引:0
作者
Panki Kim
Renming Song
Zoran Vondraček
机构
[1] Seoul National University,Department of Mathematical Sciences and Research Institute of Mathematics
[2] University of Illinois,Department of Mathematics
[3] University of Zagreb,Department of Mathematics, Faculty of Science
来源
Potential Analysis | 2018年 / 49卷
关键词
Heat kernel estimates; Subordinate Brownian motion; Symmetric Lévy process; Non-symmetric operator; Non-symmetric Markov process; Primary 60J35; Secondary 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
Let J be the Lévy density of a symmetric Lévy process in ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{d}$\end{document} with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator ℒκf(x):=limε↓0∫{z∈ℝd:|z|>ε}(f(x+z)−f(x))κ(x,z)J(z)dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$\end{document} where κ(x, z) is a Borel function on ℝd×ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{d}\times \mathbb {R}^{d}$\end{document} satisfying 0 < κ0 ≤ κ(x, z) ≤ κ1, κ(x, z) = κ(x,−z) and |κ(x, z) − κ(y, z)|≤ κ2|x − y|β for some β ∈ (0, 1]. We construct the heat kernel pκ(t, x, y) of ℒκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {L}^{\kappa }$\end{document}, establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel pκ.
引用
收藏
页码:37 / 90
页数:53
相关论文
共 21 条
  • [1] Bass RF(2009)Regularity results for stable-like operators J. Funct. Anal. 257 2693-2722
  • [2] Bogdan K(2014)Density and tails of unimodal convolution semigroups J. Funct. Anal. 266 3543-3571
  • [3] Grzywny T(2016)Global Dirichlet heat kernel estimates for symmetric Lévy processes in half-space Acta Appl. Math. 146 113-143
  • [4] Ryznar M(2009)On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces Acta Math. Sin. 25 1067-1086
  • [5] Chen Z-Q(2014)Dirichlet heat kernel estimates for rotationally symmetric Lévy processes Proc. Lond. Math. Soc. (3) 109 90-120
  • [6] Kim P(2016)Heat kernels and analyticity of non-symmetric jump diffusion semigroups Probab. Theory Relat. Fields 165 267-312
  • [7] Chen Z-Q(2014)On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes Potential Anal. 41 1-29
  • [8] Kim P(2015)Estimates of transition densities and their derivatives for jump Lévy processes J. Math. Anal. Appl. 431 260-282
  • [9] Kumagai T(2014)Global uniform boundary Harnack principle with explicit decay rate and its applications Stoch. Process. Appl. 124 235-267
  • [10] Chen Z-Q(1981)The growth of random walks and Lévy processes Ann. Probab. 9 948-956