The Group of Quotients of the Semigroup of Invertible Nonnegative Matrices Over Local Rings

被引:0
作者
Nemiro V.V. [1 ]
机构
[1] Moscow State University, Moscow
关键词
D O I
10.1007/s10958-021-05526-9
中图分类号
学科分类号
摘要
In this paper, we prove that for a linearly ordered local ring R with 1/2 the group of quotients of the semigroup of invertible nonnegative matrices Gn(R) for n ≥ 3 coincides with the group GLn(R). © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:860 / 875
页数:15
相关论文
共 50 条
[21]   Centralizing maps on invertible or singular matrices over division rings [J].
Liu, Cheng-Kai .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 :318-324
[22]   FACTORIZATION OF INVERTIBLE MATRICES OVER RINGS OF STABLE RANK ONE [J].
VASERSTEIN, LN ;
WHELAND, E .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :455-460
[23]   On maximal subgroups of the semigroup of nonnegative matrices [J].
Meenakshi, A .
ABELIAN GROUPS AND MODULES: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE AT COLORADO SPRINGS, 1996, 182 :305-313
[24]   NOTE ON THE SEMIGROUP OF NONNEGATIVE MATRICES. [J].
Robinson Jr., Cecil E. .
Industrial Mathematics, 1987, 37 (pt 2) :147-155
[25]   Local Rings of Rings of Quotients [J].
M. A. Gómez Lozano ;
M. Siles Molina .
Algebras and Representation Theory, 2008, 11
[27]   Multiplicative semigroup automorphisms of upper triangular matrices over rings [J].
Cao, CG ;
Zhang, X .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 278 (1-3) :85-90
[28]   RINGS OF QUOTIENTS OF GROUP RINGS [J].
BURGESS, WD .
CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04) :865-&
[29]   Local rings of rings of quotients [J].
Lozano, M. A. Gomez ;
Molina, M. Siles .
ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (05) :425-436
[30]   Group rings and semigroup rings over strong Mori domains, II [J].
Park, MH .
JOURNAL OF ALGEBRA, 2004, 275 (02) :771-780