Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means

被引:0
作者
Jun-Feng Li
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Hunan City University,School of Mathematics and Computation Sciences
[2] Huzhou Broadcast and TV University,School of Distance Education
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Toader mean; arithmetic mean; quadratic mean; Neuman mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the best possible parameters α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha, \beta \in\mathbb{R}$\end{document} and λ,μ∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda, \mu\in(1/2, 1)$\end{document} such that the double inequalities αNAQ(a,b)+(1−α)A(a,b)<T∗(a,b)<βNAQ(a,b)+(1−β)A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)$\end{document}, Q[λa+(1−λ)b,λb+(1−λ)a]<T∗(a,b)<Q[μa+(1−μ)b,μb+(1−μ)a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] $\end{document} hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a, b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where T∗(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{\ast}(a,b)$\end{document}, A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)$\end{document}, Q(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(a,b)$\end{document} and NQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{QA}(a,b)$\end{document} are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively.
引用
收藏
相关论文
共 50 条
[41]   Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means [J].
Wei-Mao Qian ;
Yu-Ming Chu ;
Xiao-Hui Zhang .
Journal of Inequalities and Applications, 2015
[42]   Sharp bounds for Neuman means in terms of one-parameter family of bivariate means [J].
Shao, Zhi-Hua ;
Qian, Wei-Mao ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[43]   Optimal combinations bounds of root-square and arithmetic means for Toader mean [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Qiu, Song-Liang .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01) :41-51
[44]   Sharp bounds for Neuman means in terms of one-parameter family of bivariate means [J].
Zhi-Hua Shao ;
Wei-Mao Qian ;
Yu-Ming Chu .
Journal of Inequalities and Applications, 2014
[45]   Optimal bounds for the Neuman-Sándor mean in terms of the first Seiffert and quadratic means [J].
Wei-Ming Gong ;
Xu-Hui Shen ;
Yu-Ming Chu .
Journal of Inequalities and Applications, 2013
[46]   SHARP INEQUALITIES FOR THE TOADER MEAN OF ORDER-1 IN TERMS OF OTHER BIVARIATE MEANS [J].
Qian, Wei-Mao ;
Chu, Hong-Hu ;
Wang, Miao-Kun ;
Chu, Yu-Ming .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01) :127-141
[47]   Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters [J].
Qian, Wei-Mao ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[48]   Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters [J].
Wei-Mao Qian ;
Yu-Ming Chu .
Journal of Inequalities and Applications, 2017
[49]   A DOUBLE INEQUALITY FOR THE COMBINATION OF TOADER MEAN AND THE ARITHMETIC MEAN IN TERMS OF THE CONTRAHARMONIC MEAN [J].
Jiang, Wei-Dong ;
Qi, Feng .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 99 (113) :237-242
[50]   NEW SHARP BOUNDS FOR IDENTRIC MEAN IN TERMS OF LOGARITHMIC MEAN AND ARITHMETIC MEAN [J].
Yang, Zhen-Hang .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04) :533-543