Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means

被引:0
作者
Jun-Feng Li
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Hunan City University,School of Mathematics and Computation Sciences
[2] Huzhou Broadcast and TV University,School of Distance Education
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Toader mean; arithmetic mean; quadratic mean; Neuman mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the best possible parameters α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha, \beta \in\mathbb{R}$\end{document} and λ,μ∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda, \mu\in(1/2, 1)$\end{document} such that the double inequalities αNAQ(a,b)+(1−α)A(a,b)<T∗(a,b)<βNAQ(a,b)+(1−β)A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)$\end{document}, Q[λa+(1−λ)b,λb+(1−λ)a]<T∗(a,b)<Q[μa+(1−μ)b,μb+(1−μ)a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] $\end{document} hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a, b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where T∗(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{\ast}(a,b)$\end{document}, A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)$\end{document}, Q(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(a,b)$\end{document} and NQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{QA}(a,b)$\end{document} are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [31] Optimal bounds for Toader mean in terms of general means
    Zhang, Qian
    Xu, Bing
    Han, Maoan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [32] Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
    Yue-Ying Yang
    Wei-Mao Qian
    Journal of Inequalities and Applications, 2017
  • [33] Sharp bounds for Sandor mean in terms of arithmetic, geometric and harmonic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [34] Bounds for the Neuman-Sandor Mean in Terms of the Arithmetic and Contra-Harmonic Means
    Li, Wen-Hui
    Miao, Peng
    Guo, Bai-Ni
    AXIOMS, 2022, 11 (05)
  • [35] Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
    Yang, Yue-Ying
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [36] Sharp Bounds for Toader-Type Means in Terms of Two-Parameter Means
    Yueying Yang
    Weimao Qian
    Hongwei Zhang
    Yuming Chu
    Acta Mathematica Scientia, 2021, 41 : 719 - 728
  • [37] SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS
    Yang, Yueying
    Qian, Weimao
    Zhang, Hongwei
    Chu, Yuming
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 719 - 728
  • [38] Optimal bounds for the Neuman-Sandor mean in terms of the first Seiffert and quadratic means
    Gong, Wei-Ming
    Shen, Xu-Hui
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [39] SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 499 - 511
  • [40] Optimal combinations bounds of root-square and arithmetic means for Toader mean
    YU-MING CHU
    MIAO-KUN WANG
    SONG-LIANG QIU
    Proceedings - Mathematical Sciences, 2012, 122 : 41 - 51