Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means

被引:0
作者
Jun-Feng Li
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Hunan City University,School of Mathematics and Computation Sciences
[2] Huzhou Broadcast and TV University,School of Distance Education
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Toader mean; arithmetic mean; quadratic mean; Neuman mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the best possible parameters α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha, \beta \in\mathbb{R}$\end{document} and λ,μ∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda, \mu\in(1/2, 1)$\end{document} such that the double inequalities αNAQ(a,b)+(1−α)A(a,b)<T∗(a,b)<βNAQ(a,b)+(1−β)A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)$\end{document}, Q[λa+(1−λ)b,λb+(1−λ)a]<T∗(a,b)<Q[μa+(1−μ)b,μb+(1−μ)a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] $\end{document} hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a, b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where T∗(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{\ast}(a,b)$\end{document}, A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)$\end{document}, Q(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(a,b)$\end{document} and NQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{QA}(a,b)$\end{document} are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [21] REFINEMENTS OF BOUNDS FOR NEUMAN MEANS IN TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 873 - 881
  • [22] Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means
    Chu, Hong-Hu
    Qian, Wei-Mao
    Chu, Yu-Ming
    Song, Ying-Qing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3424 - 3432
  • [23] SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Ma, Xiao-Yan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 161 - 166
  • [24] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN
    Xu, Hui-Zuo
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1149 - 1158
  • [25] Sharp inequalities for Toader mean in terms of other bivariate means
    Jiang, Wei-Dong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (04): : 841 - 849
  • [26] SHARP BOUNDS FOR NEUMAN-SNDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    褚玉明
    赵铁洪
    宋迎清
    Acta Mathematica Scientia, 2014, 34 (03) : 797 - 806
  • [27] Optimal bounds for Toader mean in terms of general means
    Qian Zhang
    Bing Xu
    Maoan Han
    Journal of Inequalities and Applications, 2020
  • [28] Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
    Ding, Qing
    Zhao, Tiehong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [29] Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
    Qing Ding
    Tiehong Zhao
    Journal of Inequalities and Applications, 2017
  • [30] Sharp bounds for Neuman means with applications
    Xia, Fang-Li
    Qian, Wei-Mao
    Chen, Shu-Bo
    Chu, Yu-Ming
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2031 - 2038