Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means

被引:0
|
作者
Jun-Feng Li
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Hunan City University,School of Mathematics and Computation Sciences
[2] Huzhou Broadcast and TV University,School of Distance Education
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Toader mean; arithmetic mean; quadratic mean; Neuman mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the best possible parameters α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha, \beta \in\mathbb{R}$\end{document} and λ,μ∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda, \mu\in(1/2, 1)$\end{document} such that the double inequalities αNAQ(a,b)+(1−α)A(a,b)<T∗(a,b)<βNAQ(a,b)+(1−β)A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)$\end{document}, Q[λa+(1−λ)b,λb+(1−λ)a]<T∗(a,b)<Q[μa+(1−μ)b,μb+(1−μ)a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] $\end{document} hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a, b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where T∗(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{\ast}(a,b)$\end{document}, A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)$\end{document}, Q(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(a,b)$\end{document} and NQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{QA}(a,b)$\end{document} are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Li, Jun-Feng
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [2] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [3] SHARP BOUNDS FOR THE TOADER MEAN OF ORDER 3 IN TERMS OF ARITHMETIC, QUADRATIC AND CONTRAHARMONIC MEANS
    Chu, Hong-Hu
    Zhao, Tie-Hong
    Chu, Yu-Ming
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1097 - 1112
  • [4] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [5] SHARP BOUNDS FOR NEUMAN MEANS IN TERMS OF GEOMETRIC, ARITHMETIC AND QUADRATIC MEANS
    Guo, Zhi-Jun
    Zhang, Yan
    Chu, Yu-Ming
    Song, Ying-Qing
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 301 - 312
  • [6] Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
    Qian, Wei-Mao
    Song, Ying-Qing
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [7] Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means
    Chu, Yu-Ming
    Wang, Hua
    Zhao, Tie-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [8] Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means
    Yu-Ming Chu
    Hua Wang
    Tie-Hong Zhao
    Journal of Inequalities and Applications, 2014
  • [9] OPTIMAL BOUNDS FOR TOADER MEAN IN TERMS OF QUADRATIC, CONTRA-HARMONIC AND SECOND NEUMAN MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (04): : 28 - 38
  • [10] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Qian, Wei-Mao
    He, Zai-Yin
    Zhang, Hong-Wei
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)