Hidden symmetries and killing tensors on curved spaces

被引:0
作者
S. Ianuş
M. Visinescu
G. E. Vîlcu
机构
[1] University of Bucharest,Department of Mathematics
[2] Institute for Physics and Nuclear Engineering,Department of Theoretical Physics
[3] Petroleum-Gas University of Ploieşti,Department of Mathematics and Computer Science
来源
Physics of Atomic Nuclei | 2010年 / 73卷
关键词
Manifold; Conformal Killing; Hide Symmetry; Dirac Theory; Conformal Killing Vector;
D O I
暂无
中图分类号
学科分类号
摘要
Higher-order symmetries corresponding to Killing tensors are investigated. The intimate relation between Killing-Yano tensors and nonstandard supersymmetries is pointed out. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to space-times which appear in modern studies. One presents the infinite dimensional superalgebra of Dirac type operators on the 4-dimensional Euclidean Taub-NUT space that can be seen as a twisted loop algebra. The existence of the conformal Killing-Yano tensors is investigated for some spaces with mixed 3-Sasakian structures.
引用
收藏
页码:1925 / 1930
页数:5
相关论文
共 56 条
  • [21] Unti T.(1993)undefined Phys. Lett. B 317 321-undefined
  • [22] Kashiwada T.(2007)undefined J. Phys. A 40 11987-undefined
  • [23] Belgun F.(2008)undefined J. Phys. A 41 164072-undefined
  • [24] Moroianu A.(2009)undefined J. Reine Angew. Math. 635 23-undefined
  • [25] Semmelmann U.(1999)undefined Suppl. J. Differ. Geom. 6 123-undefined
  • [26] Moroianu A.(1976)undefined Lect. NotesMath. 509 1-undefined
  • [27] Semmelmann U.(1976)undefined Tensor, New Ser. 30 219-undefined
  • [28] Semmelmann U.(2006)undefined Mediterr. J.Math. 3 581-undefined
  • [29] Visinescu M.(2009)undefined Ann. Polon. Math. 96 107-undefined
  • [30] Klishevich V. V.(2008)undefined Int. J. Geom. Methods Mod. Phys. 5 893-undefined