Hidden symmetries and killing tensors on curved spaces

被引:0
作者
S. Ianuş
M. Visinescu
G. E. Vîlcu
机构
[1] University of Bucharest,Department of Mathematics
[2] Institute for Physics and Nuclear Engineering,Department of Theoretical Physics
[3] Petroleum-Gas University of Ploieşti,Department of Mathematics and Computer Science
来源
Physics of Atomic Nuclei | 2010年 / 73卷
关键词
Manifold; Conformal Killing; Hide Symmetry; Dirac Theory; Conformal Killing Vector;
D O I
暂无
中图分类号
学科分类号
摘要
Higher-order symmetries corresponding to Killing tensors are investigated. The intimate relation between Killing-Yano tensors and nonstandard supersymmetries is pointed out. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to space-times which appear in modern studies. One presents the infinite dimensional superalgebra of Dirac type operators on the 4-dimensional Euclidean Taub-NUT space that can be seen as a twisted loop algebra. The existence of the conformal Killing-Yano tensors is investigated for some spaces with mixed 3-Sasakian structures.
引用
收藏
页码:1925 / 1930
页数:5
相关论文
共 56 条
  • [1] Benenti S.(1977)undefined Rep.Math. Phys. 12 311-undefined
  • [2] Carter B.(1977)undefined Phys. Rev. D 16 3395-undefined
  • [3] Yano K.(1952)undefined Ann. Math. 55 328-undefined
  • [4] Gibbons G. W.(1993)undefined Nucl. Phys. B 404 42-undefined
  • [5] Rietdijk R.(2004)undefined Class. Quantum Grav. 21 1051-undefined
  • [6] van Holten J. W.(1979)undefined Phys. Rev. D 19 1093-undefined
  • [7] Cariglia M.(2008)undefined Class. Quantum Grav. 25 154005-undefined
  • [8] Carter B.(1988)undefined Comm. Math. Phys. 115 267-undefined
  • [9] McLenaghan R. G.(2009)undefined SIGMA 5 022-undefined
  • [10] Frolov V. P.(1998)undefined J. High Energy Phys. 9811 017-undefined