Secure quantum weak oblivious transfer against individual measurements

被引:0
作者
Guang Ping He
机构
[1] Sun Yat-sen University,School of Physics and Engineering
来源
Quantum Information Processing | 2015年 / 14卷
关键词
Quantum cryptography; Communication security; Quantum communication; Quantum oblivious transfer;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum weak oblivious transfer, Alice sends Bob two bits and Bob can learn one of the bits at his choice. It was found that the security of such a protocol is bounded by 2PAlice∗+PBob∗≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2P_{\mathrm{Alice}}^{*}+P_{\mathrm{Bob}}^{*}\ge 2$$\end{document}, where PAlice∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{\mathrm{Alice}}^{*}$$\end{document} is the probability with which Alice can guess Bob’s choice, and PBob∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm{Bob}}^{*}$$\end{document} is the probability with which Bob can guess both of Alice’s bits given that he learns one of the bits with certainty. Here we propose a protocol and show that as long as Alice is restricted to individual measurements, then both PAlice∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm{Alice}}^{*}$$\end{document} and PBob∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm{Bob}}^{*}$$\end{document} can be made arbitrarily close to 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document}, so that maximal violation of the security bound can be reached. Even with some limited collective attacks, the security bound can still be violated. Therefore, although our protocol still cannot break the bound in principle when Alice has unlimited cheating power, it is sufficient for achieving secure quantum weak oblivious transfer in practice.
引用
收藏
页码:2153 / 2170
页数:17
相关论文
共 50 条
  • [21] Quantum Oblivious Transfer Based on Entanglement Swapping
    Zhang, Xinglan
    Chen, Fei
    Guo, Yankun
    Zhang, Feng
    Li, Dengxiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (08)
  • [22] Quantum Oblivious Transfer Based on Entanglement Swapping
    Xinglan Zhang
    Fei Chen
    Yankun Guo
    Feng Zhang
    Dengxiang Li
    International Journal of Theoretical Physics, 62
  • [23] Practical Quantum Bit Commitment Protocol Based on Quantum Oblivious Transfer
    Song, Yaqi
    Yang, Li
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [24] Practical efficient 1-out-of-n quantum oblivious transfer protocol
    Zhang, Xue
    Wei, Chunyan
    Qin, Sujuan
    Gao, Fei
    Wen, Qiaoyan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [25] Practical efficient 1-out-of-n quantum oblivious transfer protocol
    Xue Zhang
    Chunyan Wei
    Sujuan Qin
    Fei Gao
    Qiaoyan Wen
    Quantum Information Processing, 22
  • [26] Practical quantum all-or-nothing oblivious transfer protocol
    Yan-Bing Li
    Qiao-Yan Wen
    Su-Juan Qin
    Fen-Zhuo Guo
    Ying Sun
    Quantum Information Processing, 2014, 13 : 131 - 139
  • [27] A practical scheme for quantum oblivious transfer and private data sampling
    Fattal, David
    Florentino, Marco
    Beausoleil, Raymond G.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING VI, 2008, 7092
  • [28] Practical quantum all-or-nothing oblivious transfer protocol
    Li, Yan-Bing
    Wen, Qiao-Yan
    Qin, Su-Juan
    Guo, Fen-Zhuo
    Sun, Ying
    QUANTUM INFORMATION PROCESSING, 2014, 13 (01) : 131 - 139
  • [29] ON THE EXISTENCE OF LOSS-TOLERANT QUANTUM OBLIVIOUS TRANSFER PROTOCOLS
    Sikora, Jamie
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (7-8) : 609 - 619
  • [30] Oblivious Transfer from Zero-Knowledge Proofs Or How to Achieve Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs on Quantum States
    Colisson, Leo
    Muguruza, Garazi
    Speelman, Florian
    ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT VIII, 2023, 14445 : 3 - 38