Physics-informed neural networks (PINNs) for fluid mechanics: a review

被引:0
作者
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Em Karniadakis
机构
[1] Brown University,Division of Applied Mathematics
[2] School of Mathematical Sciences Xiamen University,Laboratory of Ocean Energy Utilization of Ministry of Education
[3] Dalian University of Technology,School of Engineering
[4] Brown University,Center for Biomedical Engineering
[5] Brown University,undefined
来源
Acta Mechanica Sinica | 2021年 / 37卷
关键词
Physics-informed learning; PINNs; Inverse problems; Supersonic flows; Biomedical flows;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1727 / 1738
页数:11
相关论文
共 91 条
[1]  
Brooks AN(1982)Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations Comput. Methods Appl. Mech. Eng. 32 199-259
[2]  
Hughes TJ(2010)Smoothed particle hydrodynamics (SPH): an overview and recent developments Arch. Comput. Methods Eng. 17 25-76
[3]  
Liu M(2017)Machine learning of linear differential equations using Gaussian processes J. Comput. Phys. 348 683-693
[4]  
Liu G(2018)Numerical Gaussian processes for time-dependent and nonlinear partial differential equations SIAM J. Sci. Comput. 40 A172-A198
[5]  
Raissi M(2019)Deep learning of vortex-induced vibrations J. Fluid Mech. 861 119-137
[6]  
Perdikaris P(2020)Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations Science 367 1026-1030
[7]  
Karniadakis GE(2020)Physics-informed neural networks for high-speed flows Comput. Methods Appl. Mech. Eng. 360 112789-707
[8]  
Raissi M(2021)Non-invasive inference of thrombus material properties with physics-informed neural networks Comput. Methods Appl. Mech. Eng. 375 113603-2074
[9]  
Perdikaris P(2019)Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686-A2626
[10]  
Karniadakis GE(2020)On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs Commun. Comput. Phys. 28 2042-26335