Spectral Properties of Some Linear Matrix Differential Operators in Lp-spaces on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}

被引:0
作者
E. Albrecht
W. J. Ricker
机构
[1] Universität des Saarlandes,Fachrichtung 6.1 – Mathematik
[2] Katholische Universität Eichstätt–Ingolstadt,Mathematisch
关键词
Primary 47A60, 47B40; Secondary 47F05; -theory; matrix differential operator; resolvent; perturbation; decomposable operator; functional calculus; spectral properties;
D O I
10.1007/s00020-007-1542-9
中图分类号
学科分类号
摘要
A detailed study is made of matrix-valued, ordinary linear differential operators T in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}({\mathbb{R}},{{\mathbb{C}}^{N}})$$\end{document} for 1 < p < ∞, which arise as the perturbation of a constant coefficient differential operator of order n ≥ 1 by a lower order differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = {\sigma_{j=0}^{n--1}} F_{j}(x)(--i\frac{d}{dx})^{j}$$\end{document} which has a factorisation S = AB for suitable operators A and B. Via techniques from Lp-harmonic analysis, perturbation theory and local spectral theory, it is shown that T satisfies certain local resolvent estimates, which imply the existence of local functional calculi and decomposability properties of T.
引用
收藏
页码:449 / 489
页数:40
相关论文
empty
未找到相关数据