Almost Sure Well-Posedness for Hall MHD

被引:0
作者
Mimi Dai
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Institute for Advanced Study,School of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2024年 / 26卷
关键词
Magnetohydrodynamics; Supercritical; Randomization; Almost sure well-posedness; 35Q35; 76D03; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the magnetohydrodynamics system with Hall effect accompanied with initial data in supercritical Sobolev space. Via an appropriate randomization of the supercritical initial data, both local and small data global well-posedness for the system are obtained almost surely in critical Sobolev space.
引用
收藏
相关论文
共 50 条
[41]   Local well-posedness of the incompressible current-vortex sheet problems [J].
Liu, Sicheng ;
Xin, Zhouping .
ADVANCES IN MATHEMATICS, 2025, 475
[42]   Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension [J].
Gu, Xumin ;
Luo, Chenyun ;
Zhang, Junyan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 182 :31-115
[43]   Global well-posedness and exponential stability of solutions for the viscous radiative and reactive gas [J].
Jiang, Jie ;
Zheng, Songmu .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (04) :645-686
[44]   Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations [J].
Wei Hua WANG ;
Gang WU .
Acta Mathematica Sinica,English Series, 2018, (06) :992-1000
[45]   GLOBAL WELL-POSEDNESS OF HEDGEHOG SOLUTIONS FOR THE (3+1) SKYRME MODEL [J].
Li, Dong .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (07) :1377-1418
[47]   Well-posedness of the upper convected Maxwell fluid in the limit of infinite Weissenberg number [J].
Wang, Xiaojun ;
Renardy, Michael .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) :125-139
[48]   Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations [J].
Wang, Wei Hua ;
Wu, Gang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (06) :992-1000
[49]   Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations [J].
Wei Hua Wang ;
Gang Wu .
Acta Mathematica Sinica, English Series, 2018, 34 :992-1000
[50]   Well-Posedness of the Multidimensional Fractional Stochastic Navier–Stokes Equations on the Torus and on Bounded Domains [J].
Latifa Debbi .
Journal of Mathematical Fluid Mechanics, 2016, 18 :25-69