Almost Sure Well-Posedness for Hall MHD

被引:0
作者
Mimi Dai
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Institute for Advanced Study,School of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2024年 / 26卷
关键词
Magnetohydrodynamics; Supercritical; Randomization; Almost sure well-posedness; 35Q35; 76D03; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the magnetohydrodynamics system with Hall effect accompanied with initial data in supercritical Sobolev space. Via an appropriate randomization of the supercritical initial data, both local and small data global well-posedness for the system are obtained almost surely in critical Sobolev space.
引用
收藏
相关论文
共 50 条
[21]   On the Well-Posedness of the Hall-Magnetohydrodynamics with the Ion-Slip Effect [J].
Han, Woo Jin ;
Hwang, Hyung Ju ;
Moon, Byung Soo .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (04)
[22]   ALMOST SURE EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR SUPERCRITICAL ELECTRON MHD [J].
Dai, Mimi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03) :1584-1610
[23]   GLOBAL WELL-POSEDNESS OF A 3D MHD MODEL IN POROUS MEDIA [J].
Titi, Edriss S. ;
Trabelsi, Saber .
JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04) :621-637
[24]   GLOBAL WELL-POSEDNESS OF THE 3D INCOMPRESSIBLE HALL-MHD EQUATIONS FOR SMALL INITIAL DATA IN CERTAIN BESOV SPACES [J].
Ma, Caochuan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) :2127-2139
[25]   Global well-posedness for axisymmetric MHD equations with vertical dissipation and vertical magnetic diffusion [J].
Wang, Peng ;
Guo, Zhengguang .
NONLINEARITY, 2022, 35 (05) :2147-2174
[26]   Well-Posedness for the Incompressible Hall-MHD System with Initial Magnetic Field Belonging to H3/2 (R3) [J].
Zhang, Shunhang .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
[27]   Global well-posedness of the free-surface incompressible ideal MHD equations with velocity damping [J].
Liu, Mengmeng ;
Jiang, Han ;
Zhang, Yajie .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06)
[28]   Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients [J].
Si, Xin ;
Ye, Xia .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05)
[29]   On the Large Data Global Well-Posedness of Inviscid Axially Symmetric MHD-Boussinesq System [J].
Li, Zijin ;
Xing, Zhaojun ;
Yang, Meixian .
ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
[30]   WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION [J].
Strunk, Nils .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) :527-542