Rényi entropies of aperiodic dynamical systems

被引:0
作者
Floris Takens
Evgeny Verbitskiy
机构
[1] University of Groningen,Department of Mathematics
[2] Eurandom,undefined
来源
Israel Journal of Mathematics | 2002年 / 127卷
关键词
Invariant Measure; Generalize Entropy; Lebesgue Space; Bernoulli Shift; Finite Partition;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we continue the study of Rényi entropies of measure-preserving transformations started in [22]. We have established there that for ergodic transformations with positive entropy, the Rényi entropies of orderq, q ∈ ℝ, are equal to either plus infinity (q < 1), or to the measure-theoretic (Kolmogorov-Sinai) entropy (q ≥ 1). The answer for non-ergodic transformations is different: the Rényi entropies of orderq > 1 are equal to the essential infimum of the measure-theoretic entropies of measures forming the decomposition into ergodic components. Thus, it is possible that the Rényi entropies of orderq > 1 are strictly smaller than the measure-theoretic entropy, which is the average value of entropies of ergodic components.
引用
收藏
页码:279 / 302
页数:23
相关论文
共 17 条
  • [1] Blume F.(1997)Possible rates of entropy convergence Ergodic Theory and Dynamical Systems 17 45-70
  • [2] Eckmann J.-P.(1985)Ergodic theory of chaos and strange attractors Reviews of Modern Physics 57 617-656
  • [3] Ruelle D.(1984)Dimensions and entropies of strange attractors from a fluctuating dynamics approach Physica D 13 34-54
  • [4] Grassberger P.(1983)The infinite number of generalized dimensions of fractals and strange attractors Physica D 8 435-444
  • [5] Procaccia I.(1976)On the minimum number of fixed length sequences with fixed total probability Annals of Probability 4 335-337
  • [6] Hentschel H. G. E.(1981)Selecting universal partitions in ergodic theory The Annals of Probability 9 705-709
  • [7] Procaccia I.(1970)On entropy and generators of measure-preserving transformations Transactions of the American Mathematical Society 149 453-464
  • [8] Kieffer J. C.(1949)On the fundamental ideas of measure theory Matematicheskii Sbornik (N.S.) 25 107-150
  • [9] Kieffer J. C.(1964)On a weak isomorphism of transformations with invariant measure Matematicheskii Sbornik (N.S.) 63 23-42
  • [10] Rahe M.(1980)Generators of an abelian group of invertible measure-preserving transformations Monatshefte für Mathematik 90 67-79