A robust and informative method for solving large-scale power flow problems

被引:0
|
作者
Walter Murray
Tomás Tinoco De Rubira
Adam Wigington
机构
[1] Stanford University,Computational and Mathematical Engineering
[2] Stanford University,Electrical Engineering
[3] Electric Power Research Institute,undefined
关键词
Power flow; Load flow; Augmented Lagrangian; Newton–Raphson; Robust; Complementarity constraints;
D O I
暂无
中图分类号
学科分类号
摘要
Solving power flow problems is essential for the reliable and efficient operation of an electric power network. However, current software for solving these problems have questionable robustness due to the limitations of the solution methods used. These methods are typically based on the Newton–Raphson method combined with switching heuristics for handling generator reactive power limits and voltage regulation. Among the limitations are the requirement of a good initial solution estimate, the inability to handle near rank-deficient Jacobian matrices, and the convergence issues that may arise due to conflicts between the switching heuristics and the Newton–Raphson process. These limitations are addressed by reformulating the power flow problem and using robust optimization techniques. In particular, the problem is formulated as a constrained optimization problem in which the objective function incorporates prior knowledge about power flow solutions, and solved using an augmented Lagrangian algorithm. The prior information included in the objective adds convexity to the problem, guiding iterates towards physically meaningful solutions, and helps the algorithm handle near rank-deficient Jacobian matrices as well as poor initial solution estimates. To eliminate the negative effects of using switching heuristics, generator reactive power limits and voltage regulation are modeled with complementarity constraints, and these are handled using smooth approximations of the Fischer–Burmeister function. Furthermore, when no solution exists, the new method is able to provide sensitivity information that aids an operator on how best to alter the system. The proposed method has been extensively tested on real power flow networks of up to 58k buses.
引用
收藏
页码:431 / 475
页数:44
相关论文
共 50 条
  • [1] A robust and informative method for solving large-scale power flow problems
    Murray, Walter
    De Rubira, Tomas Tinoco
    Wigington, Adam
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (02) : 431 - 475
  • [2] BELTISTOS: A robust interior point method for large-scale optimal power flow problems
    Kardos, Juraj
    Kourounis, Drosos
    Schenk, Olaf
    Zimmerman, Ray
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [3] On a robust multilevel method applied for solving large-scale linear elasticity problems
    Padiy, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1999, 15 (03): : 153 - 165
  • [5] Solving large-scale problems by Taylor Meshless method
    Yang, Jie
    Hu, Heng
    Potier-Ferry, Michel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (02) : 103 - 124
  • [6] Solving large-scale multicriteria problems by the decomposition method
    Rabinovich, Ya. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (01) : 60 - 74
  • [7] Solving large-scale multicriteria problems by the decomposition method
    Ya. I. Rabinovich
    Computational Mathematics and Mathematical Physics, 2012, 52 : 60 - 74
  • [8] The Parallel Solving And Program Implementation Method Of Large-Scale Power Flow Correction Equations
    Luo, Yadi
    Li, Jing
    Jia, Yupei
    Xu, Jie
    Li, Sen
    Du, Jiatong
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 3809 - 3813
  • [9] A hybrid method for solving large-scale supply chain problems
    Wolf, Steffen
    Merz, Peter
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4446 : 219 - +
  • [10] Solving large-scale control problems
    Benner, P
    IEEE CONTROL SYSTEMS MAGAZINE, 2004, 24 (01): : 44 - 59