On oscillatory singular integrals and their commutators with non-convolutional Hölder class kernels

被引:4
作者
Liu F. [1 ]
Wang S. [2 ,3 ]
Xue Q. [2 ,3 ]
机构
[1] College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, Shandong
[2] School of Mathematics and Statistics, Beijing Normal University, Beijing
[3] Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing
基金
中国国家自然科学基金;
关键词
Commutator; Compactness; Hölder condition; Oscillatory integral; Real-valued polynomial;
D O I
10.1007/s43037-021-00138-6
中图分类号
学科分类号
摘要
Let P(x, y) be a real-valued polynomial on Rn× Rn. We denote by deg x(P) (resp., deg y(P)) the degree of P in x (resp., y). In this paper, we investigate the properties of the oscillatory integral given by TP,Kf(x)=p.v.∫RneiP(x,y)K(x,y)f(y)dy, where K is a Calderón–Zygmund non-convolutional type kernel. If the kernel K(x, y) satisfies a Hölder condition and P(x, y) satisfies the condition deg x(P) ≤ 1 or deg y(P) ≤ 1 , we show that both TP,K and its commutator Tb,P,K are bounded on Lwp(Rn) for 1 < p< ∞ , b∈ BMO (Rn) and w∈ Ap(Rn). We also prove that the commutator Tb,P,K is a compact operator on Lwp(Rn) if b∈ CMO (Rn) for all 1 < p< ∞ and w∈ Ap(Rn). Here CMO (Rn) denotes the closure of Cc∞(Rn) in the BMO (Rn) topology. © 2021, Tusi Mathematical Research Group (TMRG).
引用
收藏
相关论文
共 30 条
[1]  
Al-Qassem H., Cheng L., Pan Y., Oscillatory singular integral operators with Hölder class kernels, J. Fourier Anal. Appl., 25, pp. 1-9, (2019)
[2]  
Al-Qassem H., Cheng L., Pan Y., Endpoint estimates for oscillatory singular integrals with Hölder class kernels, J. Funct. Spaces., pp. 1-7, (2019)
[3]  
Alvarez J., Bagby R.J., Kurtz D.S., Perez C., Weighted estimates for commutators of linear operators, Stud. Math., 104, 2, pp. 195-209, (1993)
[4]  
Carbery A., Christ M., Wright J., Multidimensional van der Corput and sublevel set estimates, J. Am. Math. Soc., 12, pp. 981-1015, (1999)
[5]  
Chen Y., Ding Y., Compactness characterization of commutators for Littlewood–Paley operators, Kodai Math. J., 32, 2, pp. 256-323, (2009)
[6]  
Chen Y., Ding Y., Hong G., Liu H., Variational inequalities for the commutators of rough operators with BMO functions, Sci. China Math., (2021)
[7]  
Clop A., Cruz V., Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math., 38, 1, pp. 91-113, (2013)
[8]  
Coifman R., Fefferman C., Weighted norm inequalities for maximal functions and singular integrals, Stud. Math., 51, pp. 241-250, (1974)
[9]  
Coifman R.R., Meyer Y., Commutateurs d’ intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, pp. 177-202, (1978)
[10]  
Coifman R.R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. Math. (2), 103, 3, pp. 611-635, (1976)