An Elliptic Algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and the Fusion RSOS Model

被引:0
作者
Hitoshi Konno
机构
[1] Department of Mathematics,
[2] Faculty of Integrated Arts and Sciences,undefined
[3] Hiroshima University,undefined
[4] Higashi-Hiroshima 739,undefined
[5] Japan. E-mail: konno@mis.hiroshima-u.ac.jp,undefined
关键词
Field Theory; Positive Integer; Generic Level; Vertex Operator; Conformal Field Theory;
D O I
10.1007/s002200050394
中图分类号
学科分类号
摘要
We introduce an elliptic algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and present its free boson representation at generic level k. We show that this algebra governs a structure of the space of states in the k-fusion RSOS model specified by a pair of positive integers (r,k), or equivalently a q-deformation of the coset conformal field theory \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Extending the work by Lukyanov and Pugai corresponding to the case k= 1, we give a full set of screening operators for k > 1. The algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} has two interesting degeneration limits, p→ 0 and p→ 1. The former limit yields the quantum affine algebra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} whereas the latter yields the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the scaling limit of the elliptic algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Using this correspondence, we also obtain the highest component of two types of vertex operators which can be regarded as q-deformations of the primary fields in the coset conformal field theory.
引用
收藏
页码:373 / 403
页数:30
相关论文
empty
未找到相关数据