We reconsider the boundary-layer flow of a non-Newtonian fluid corresponding to the classical Ostwald de Waele power-law model. The physical problem can be described in terms of solutions of the degenerate differential equation
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(|f^{\prime\prime}|^{n-1}f^{\prime\prime})^{\prime} + ff^{\prime\prime} - \beta f^{\prime2} = 0,$$
\end{document}posed on the interval (0, ∞), in which β < 0 and the real number (the power law index) n ≥ 1. This paper deals with the asymptotic behavior of any global unbounded solution; that is a solution satisfying
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathop{{\rm lim}}\limits_{\eta\rightarrow\infty}}|f(\eta)| = \infty$$
\end{document}.