Asymptotic behavior of the unbounded solutions to some degenerate boundary layer equations revisited

被引:0
作者
M. Guedda
R. Kersner
机构
[1] Université de Picardie Jules Verne,LAMFA, CNRS UMR 6140, Faculté de Mathématiques et d’Informatique
[2] University of Pécs,Department of Mathematics
[3] PMMF,undefined
来源
Archiv der Mathematik | 2007年 / 89卷
关键词
34B15; 34B60; 76D10; Boundary-layer; non-Newtonian fluids; degenerate differential equation; asymptotic behavior;
D O I
暂无
中图分类号
学科分类号
摘要
We reconsider the boundary-layer flow of a non-Newtonian fluid corresponding to the classical Ostwald de Waele power-law model. The physical problem can be described in terms of solutions of the degenerate differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(|f^{\prime\prime}|^{n-1}f^{\prime\prime})^{\prime} + ff^{\prime\prime} - \beta f^{\prime2} = 0,$$ \end{document}posed on the interval (0, ∞), in which β < 0 and the real number (the power law index) n ≥ 1. This paper deals with the asymptotic behavior of any global unbounded solution; that is a solution satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathop{{\rm lim}}\limits_{\eta\rightarrow\infty}}|f(\eta)| = \infty$$ \end{document}.
引用
收藏
页码:278 / 288
页数:10
相关论文
empty
未找到相关数据