Classes of harmonic functions defined by convolution

被引:0
作者
Jacek Dziok
机构
[1] University of Rzeszów,Faculty of Mathematics and Natural Sciences
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Harmonic functions; Convolution; Subordination; Extreme points; Starlike functions; Primary 30C55; Secondary 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
The object of the present paper is to investigate classes of harmonic functions defined by convolution. Some necessary and sufficient conditions, topological properties, radii of convexity and starlikeness, as well as extreme points for the classes are considered.
引用
收藏
页码:399 / 416
页数:17
相关论文
共 53 条
  • [1] Ahuja O(2008)Connections between various subclasses of planar harmonic mappings involving hypergeometric functions Appl. Math. Comput. 198 305-316
  • [2] Ahuja OP(2005)Certain multipliers of univalent harmonic functions Appl. Math. Lett. 18 1319-1324
  • [3] Jahangiri JM(2014)Fekete–Szegö problem for certain classes of analytic functions of complex order defined by the Dziok–Srivastava operator Acta Math. Vietnam. 39 185-192
  • [4] Al-Hawary T(2011)Goodman–Rřnning-type harmonic univalent functions based on Dziok–Srivastava operator Appl. Math. Sci. 5 573-584
  • [5] Frasin BA(1996)Some families of starlike functions with negative coefficients J. Math. Anal. Appl. 203 762-790
  • [6] Darus M(2008)On certain subclass of harmonic univalent functions J. Anal. Appl. 6 17-28
  • [7] Al-Khal RA(2010)A subclass of harmonic univalent functions with positive coefficients Tamkang J. Math. 41 261-269
  • [8] Aouf MK(2015)On Janowski harmonic functions J. Appl. Anal. 21 99-107
  • [9] Srivastava HM(2016)Generalizations of starlike harmonic functions C. R. Math. Acad. Sci. Paris 354 13-18
  • [10] Darus M(2003)Certain subclasses of analytic functions associated with the generalized hypergeometric function Integral Transf. Spec. Funct. 14 7-18