Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity

被引:29
作者
Okada M. [1 ]
Matušů-Nečasová Š. [2 ]
Makino T. [1 ]
机构
[1] Department of Applied Science, Faculty of Engineering, Yamaguchi University
[2] Mathematical Institute, Academy of Sciences, Czech Republic, 115 67 Praha 1
来源
Annali dell’Università di Ferrara | 2002年 / 48卷 / 1期
关键词
a free boundary problem; a global weak solution; density-dependent viscosity; existence; isentropic gas; uniqueness;
D O I
10.1007/BF02824736
中图分类号
学科分类号
摘要
We consider a free boundary problem for the equation of the one-dimensional isentropic motion with density-dependent viscosity μ =bρ{variant}β, where b and β are positive constants. We prove that there exists an unique weak solution globally in time, provided that β < 1/3. © 2002 Università degli Studi di Ferrara.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 14 条
[1]  
Okada M., Free boundary value problems for the equation of one-dimensionals motion of viscous gas, Japan J. Indust. Appl. Math., 6, pp. 161-177, (1989)
[2]  
Balian R., From microphysics to macrophysics, Texts and monographs in physics, (1982)
[3]  
Grad H., Asymptotic theory of the Boltzmann equation. II, Rarefied gas dynamics, 1, pp. 26-59
[4]  
Kawashima S., Matsumura A., Nishida T., On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Commun. Math. Phys., 70, pp. 97-124, (1979)
[5]  
Jiang S., Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity, Math. Nachr., 190, pp. 169-183, (1998)
[6]  
Matusu-Necasova S., Okada M., Makino T., Free boundary problem for the equation of spherically symmetric motion of viscous gas (II), Japan J. Indust. Appl. Math., 12, pp. 195-203, (1995)
[7]  
Lions P.L., Mathematical topics in fluid dynamics, 2
[8]  
Feireisl E., Petzeltova H., On the integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow
[9]  
Feireisl E., Matusu S., Necasova H., Petzeltova I., Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external force
[10]  
Padula M., Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas-dynamics, Mecanica J. Of the A.I.ME.T.A., 17, (1981)