Prescribing eigenvalues of the Dirac operator

被引:0
作者
Mattias Dahl
机构
[1] Kungl Tekniska Högskolan,Institutionen för Matematik
来源
manuscripta mathematica | 2005年 / 118卷
关键词
Number Theory; Algebraic Geometry; Dirac Operator; Topological Group; Spin Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we show that every compact spin manifold of dimension ≥3 can be given a Riemannian metric for which a finite part of the spectrum of the Dirac operator consists of arbitrarily prescribed eigenvalues with multiplicity 1.
引用
收藏
页码:191 / 199
页数:8
相关论文
共 9 条
[1]  
Bär M.(6)The classification of simply connected manifolds of positive scalar curvature Geom. Funct. Anal. 6 899-434
[2]  
Bär H.B.(2002)undefined J. Reine Angew. Math. 552 53-undefined
[3]  
Dahl undefined(1)undefined Ann. Global Anal. Geom. 24 95-undefined
[4]  
Gromov undefined(1980)undefined Ann. Math. (2) 111 423-undefined
[5]  
Lawson undefined(1974)undefined Advances Math. 14 1-undefined
[6]  
Hitchin undefined(2)undefined Comment. Math. Helv. 71 213-undefined
[7]  
Lohkamp undefined(2)undefined Commun. Math. Phys. 188 407-undefined
[8]  
Maier undefined(1)undefined Ann. Global Anal. Geom. 7 59-undefined
[9]  
Wang undefined(undefined)undefined undefined undefined undefined-undefined