Continuous orbit equivalence, flow equivalence of Markov shifts and circle actions on Cuntz–Krieger algebras

被引:0
作者
Kengo Matsumoto
机构
[1] Joetsu University of Education,Department of Mathematics
来源
Mathematische Zeitschrift | 2017年 / 285卷
关键词
Cuntz-Krieger Algebras; Topological Markov Shifts; Circle Action; Continuum Orbitals; Flow Equations;
D O I
暂无
中图分类号
学科分类号
摘要
We will study circle actions on Cuntz–Krieger algebras trivially acting on its canonical maximal abelian C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-subalgebras from the view points of continuous orbit equivalence of one-sided topological Markov shifts and flow equivalence of two-sided topological Markov shifts.
引用
收藏
页码:121 / 141
页数:20
相关论文
共 34 条
[11]  
Kumjian A(2010)-algebras and topological Markov chains Pac. J. Math. 246 199-225
[12]  
Raeburn I(2013)Flow equivalence of subshifts of finite type Proc. Am. Math. Soc. 141 2329-2342
[13]  
Williams DP(2015)On automorphisms of J. Oper. Theory 74 101-127
[14]  
Cuntz J(2014)-algebras associated with subshifts Kyoto J. Math. 54 863-878
[15]  
Krieger W(2012)Strong shift equivalence of symbolic dynamical systems and Morita equivalence of Proc. Lond. Math. Soc. 104 27-56
[16]  
Franks J(2015)-algebras J. Reine Angew. Math. 705 35-84
[17]  
Matsumoto K(2008)Orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras Isr. J. Math. 167 315-346
[18]  
Matsumoto K(1975)Classification of Cuntz–Krieger algebras by orbit equivalence of topological Markov shifts Topology 14 297-299
[19]  
Matsumoto K(1989)Strongly continuous orbit equivalence of one-sided topological Markov shifts Trans. Am. Math. Soc. 311 513-533
[20]  
Matsumoto K(1974)Continuous orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras Adv. Math. 13 176-257