Continuous orbit equivalence, flow equivalence of Markov shifts and circle actions on Cuntz–Krieger algebras

被引:0
作者
Kengo Matsumoto
机构
[1] Joetsu University of Education,Department of Mathematics
来源
Mathematische Zeitschrift | 2017年 / 285卷
关键词
Cuntz-Krieger Algebras; Topological Markov Shifts; Circle Action; Continuum Orbitals; Flow Equations;
D O I
暂无
中图分类号
学科分类号
摘要
We will study circle actions on Cuntz–Krieger algebras trivially acting on its canonical maximal abelian C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-subalgebras from the view points of continuous orbit equivalence of one-sided topological Markov shifts and flow equivalence of two-sided topological Markov shifts.
引用
收藏
页码:121 / 141
页数:20
相关论文
共 34 条
[1]  
Boyle M(1996)Orbit equivalence, flow equivalence and ordered cohomology Isr. J. Math. 95 169-210
[2]  
Handelman D(1977)Homology for zero-dimensional nonwandering sets Ann. Math. 106 73-92
[3]  
Bowen R(1977)Stable isomorphism of hereditary subalgebras of Pac. J. Math. 71 335-348
[4]  
Franks J(1977)-algebras Pac. J. Math. 71 349-363
[5]  
Brown LG(1984)Stable isomorphism and strong Morita equivalence of Proc. Lond. Math. Soc. 49 289-306
[6]  
Brown LG(1997)-algebras J. Funct. Anal. 146 151-184
[7]  
Green P(1980)Crossed products and Morita equivalence Invent. Math. 56 251-268
[8]  
Rieffel MA(1984)An equivariant Brauer group and actions of groups of Ergod. Theory Dyn. Syst. 4 53-66
[9]  
Combes F(2000)-algebras J. Oper. Theory 44 91-112
[10]  
Crocker D(2002)A class of Ergod. Theory Dyn. Syst. 24 199-215