On oscillation of solutions of second-order nonlinear difference equations

被引:2
作者
Koplatadze R. [1 ]
Pinelas S. [2 ]
机构
[1] Tbilisi State University, Tbilisi
[2] Departamento de Cîencias Exactas e Naturais, Academia Militar, Amadora
基金
美国国家科学基金会;
关键词
Difference Equation; Functional Differential Equation; Proper Solution; Nonoscillatory Solution; Oscillation Criterion;
D O I
10.1007/s10958-013-1218-8
中图分类号
学科分类号
摘要
We consider the difference equation Δ2u(k)+ p(k){pipe}u(σ(k)){pipe}γ sign u(σ(k))= 0, where 0≤ γ ≤ 1, p: N → R+, σ:N → N, σ(k) ≥ k + 1 for k ε N and the difference operator is defined as follows: Δu(k)=u(k + 1) - u(k), Δ2 = Δ o{script} Δ. Necessary conditions are obtained for the above equation to have a positive solution. In addition, oscillation criteria of new type are obtained © 2013 Springer Science+Business Media New York.
引用
收藏
页码:784 / 794
页数:10
相关论文
共 9 条
[1]  
Cheng S.S., Yan T.C., Li H.J., Oscillation criteria for second-order difference equations, Funkc. Ekvac., 34, pp. 223-239, (1991)
[2]  
Grace A.R., Lalli B.S., Oscillation theorems for second-order delay and neutral difference equations, Util. Math., 45, pp. 197-211, (1994)
[3]  
Koplatadze R., Kvinikadze G., Stavroulakis I.P., Oscillation of second-order linear difference equations with deviating arguments, Adv. Math. Sci. Appl. Gakǒtosho, Tokyo, 12, 1, pp. 217-226, (2002)
[4]  
Koplatadze R., Oscillation of linear difference equations with deviating arguments, Comput. Math. Appl., 42, pp. 477-486, (2001)
[5]  
Kordonis I.-G.E., Philos C.G., Oscillation and nonoscillation in linear delay or advanced difference equations, Math. Comput. Model., 27, 7, pp. 11-21, (1998)
[6]  
Koplatadze R., Kvinikadze G., Necessary conditions for the existence of positive solutions of second-order linear difference equations and sufficient conditions for the oscillation of solutions, Nonlin. Oscillations, 12, 2, pp. 184-198, (2009)
[7]  
Koplatadze R., On asymptotic behavior of solutions of almost linear and essentially nonlinear differential equations, Nonlin. Anal. Theory, Meth. Appl., 71, pp. 396-400, (2009)
[8]  
Koplatadze R., On asymptotic behavior of solutions of nth order Emden-Fowler differential equations with advanced argument, Czech. Math. J., 60, 135, pp. 817-833, (2010)
[9]  
Koplatadze R., On oscillatory properties of solutions of functional differential equations, Mem. Different. Equat. Math. Phys., 3, pp. 1-179, (1994)