Inequalities of Bernstein and Jackson-Nikol’skii type and estimates of the norms of derivatives of Dirichlet kernels

被引:0
作者
M. B. Sikhov
机构
[1] Al-Farabi Kazakh State National University,
来源
Mathematical Notes | 2006年 / 80卷
关键词
Bernstein-type inequality; Jackson-Nikol’skii inequality; Dirichlet kernel; trigonometric polynomial; spectrum of a polynomial; hyperbolic cross;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain Bernstein and Jackson-Nikol’skii inequalities for trigonometric polynomials with spectrum generated by the level surfaces of a function Λ(t), and study their sharpness under a specific choice of Λ(t). Estimates of the norms of derivatives of Dirichlet kernels with harmonics generated by the level surfaces of the function Λ(t) are established in Lp.
引用
收藏
页码:91 / 100
页数:9
相关论文
共 10 条
[1]  
Pustovoitov N. N.(1999)Approximation of multidimensional functions with a given majorant of mixed moduli of continuity Mat. Zametki 65 107-117
[2]  
Galeev É. M.(1982)Ordered estimates of derivatives of a periodic multidimensional Dirichlet Mat. Sb. 117 32-43
[3]  
Mityagin B. S.(1962)-kernel in a mixed norm Mat. Sb. 58 397-414
[4]  
Nikol’skaya N. S.(1974)Approximation of functions in the spaces Sibirsk. Mat. Zh. 15 395-412
[5]  
Nikol’skii S. M.(1951) and Trudy Mat. Inst. Steklov 38 244-278
[6]  
Jackson D.(1933) on the torus Bull. Amer. Math. Soc. 39 889-906
[7]  
Belinskii É. S.(1991)Approximation of differentiable functions of several variables by Fourier sums in the metric of Mat. Zametki 49 12-18
[8]  
Nessel R. J.(1978)Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables. J. Austral. Math. Soc. Ser. A 25 7-18
[9]  
Wilmes G.(1998)Certain problem of closest approximation Sibirsk. Mat. Zh. 39 1157-1163
[10]  
Smailov E. S.(undefined)Two extremal problems for trigonometric polynomials with a given number of harmonics undefined undefined undefined-undefined