Naishul’s theorem for fibered holomorphic maps

被引:0
作者
Mario Ponce
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
来源
Mathematische Zeitschrift | 2012年 / 271卷
关键词
Rotation Number; Local Dynamic; Invariant Torus; Invariant Curve; Zero Section;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the fibered rotation number associated to an indifferent invariant curve for a fibered holomorphic map is a topological invariant.
引用
收藏
页码:867 / 875
页数:8
相关论文
共 13 条
[1]  
Gambaudo J.-M.(1996)Une généralisation d’un théorème de Naishul. C. R. Acad. Sci. Paris Sér. I Math. 323 397-402
[2]  
Le Calvez P.(1995)A topological invariant for volume preserving diffeomorphisms Ergodic Theory Dynam. Systems. 15 535-541
[3]  
Pécou É.(1983)Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension 2 Comment. Math. Helv. 58 453-502
[4]  
Gambaudo J.-M.(2008)A topological characterization of holomorphic parabolic germs in the plane Fund. Math. 198 77-94
[5]  
Pécou É.(1982)Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in C Trudy Moskov. Mat. Obshch. 44 235-245
[6]  
Herman M.-R.(2007) and C Nonlinearity 20 2939-2955
[7]  
Le Roux F.(2002)Local dynamics for fibred holomorphic transformations Dyn. Syst. 17 1-28
[8]  
Naĭshul′ V.A.(undefined)Rotation numbers for quasi-periodically forced monotone circle maps undefined undefined undefined-undefined
[9]  
Ponce M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Stark J.(undefined)undefined undefined undefined undefined-undefined